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PREFACE.

Tre following volume is a sequel to my treatise on the
Differential Calculus, and, like that, is written as a text-book.
The last chapter, however, a Key to the Solution of Differential
Equations, may prove of service to working mathematicians.

I have used freely the works of Bertrand, Benjamin Peirce,
Todhunter, and Boole; and 1 am much indebted to Professor
J. M. Peirce for criticisms and suggestions.

I refer constantly to my work on the Differential Calculus
as Volume I.; and for the sake of convenience I have added
Chapter V. of that book, which treats of Integration, as an

appendix to the present volume.
W. E. BYERLY.
CAMBRIDGE, 1881.



PREFACE TO SECOND EDITION.

IN enlarging my Integral Calculus I have used freely
Schlémilch’s ¢¢ Compendium der Hoheren Analysis,” Cayley’s
¢« Elliptic Functions,” Meyer's ¢ Bestimmte Integrale,” For-
syth’s ¢ Differential Equations,” and Williamson’s ‘¢ Integral
Calculus.”

The chapter on Theory of Functions was sketched out and
in part written by Professor B. O. Peirce, to whom I am
greatly indebted for numerous valuable suggestions touching
other portions of the book, and who has kindly allowed me
to have his Short Table of Integrals bound in with this volume.

W. E. BYERLY.
CAMBRIDGE, 1888.
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INTEGRAL CALCULTS.

CHAPTER 1.
SYMBOLS OF OPERATION.

1. It is often convenient to regard a functional symbol as
indicating an operation to be performed upon the expression
which is written after the symbol. From this point of view the
symbol is called a symbol of operation, and the expression writ-
ten after the symbol is called the subject of the operation.

Thus the symbol D, in D,(«*y) indicates that the operation of
differentiating with respect to z is to be performed upon the
subject (2*y).

2. If the result of one operation is taken as the subject of a
second, there is formed what is called a compound function.

Thus logsinz is a compound function, and we may speak of
the taking of the logsin as a compound operation.

3. When two operations are so related that the compound
operation, in which the result of performing the first on any
subject is taken as the subject of the second, leads to the same
result as the compound operation, in which the result of per-
forming the second on the same subject is taken as the subject
of the first, the two operations are commutative or relutively free.

Or to formulate ; if
SfFu= Ffu,

the operations indicated Ly f and F are commutative.
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For example; the operations of partial differentiation with
respect to two independent variables  and y are commutative,

for we know that
D,Dyu=D,D,u. (I. Art.197).

The operations of taking the sine and of taking the logarithm
are not commutative, for logsinu is not equal to sinlogu.

4. If S(uxv)=futfo

where u and v are any subjects, the operation fis distributive or
linear.

The operation indicated by d and the operation indicated by
D, are distributive, for we know that

d(u + v)=du x dv,
and that D,(u £v)=D,ux D,v.

The operation sin is not distributive, for sin(u 4 v) is not
equal to sinu 4 sinv.

5. The compounds of distributive operations are distributive.
Let f and F indicate distributive operations, then fF will be
distributive ; for
F(uxv)=Fuzx Fv,

therefore  fF(u £ v)=f(Fu £ Fv)=fFu + fFv.

6. The repetition of any operation is indicated by writing an
exponent, equal to the number of times the operation is per-
Jformed, after the symbol of the operation.

Thus log*x means logloglogx; d*u means dddu.

In the single case of the trigonometric functions a different
use of the exponent is sanctioned by custom, and sin’u means
(sinu)? and not sin sinu.

7. If m and n are whole numbers it is casily proved that

Soru=gn
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This formula is assumed for all values of m and n, and nega-
tive and fractional exponents are interpreted by its aid. It is
called the law of indices.

8. To find what interpretation must be given to a zero ez-
ponent, let m=0 in the formula of Art. 7.
Lofru=f0+ "u=f"u,

or, denoting /™u by v, Sv=0.

That is ; a symbol of operation with the exponent zero has no
effect on the subject, and may be regarded as multiplying it by
unity.

9. To interpret a negative exponent, let

m= —n in the formula of Art. 7.

S ru=f""*ru=ffu=u.

If we call Sfu=v, then f~"v=u.
If n=1
we get [ fu=u,

and the exponent —1 indicates what we have called the anti-
function of fu. (I. Art. 72.)

The exponent —1 is used in this sense ¢ven with trigonometric
functions.

10. When two operations are commutative and distributive,
the symbols which represent them mnay be combined precisely as
if they were algebraic quantities.

For they obey the laws,

a(m + n) = wm + an,
am = ma,

on which all the operations of arithmetic and algebra are founded.
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For example ; if the operation (D,+ D,) is to be performed
n times in succession on a subject u, we can expand (D, + D,)*
precisely as if it were a binominal, and then perform on u the
operations indicated by the expanded expression.

(D.+ D,)*u=(D3+3D2D,+3D,D;} + D})u
=D u+38D2D,u+3D,D} v+ Dju.
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CHAPTER II.
IMAGINARIES.

11. An imaginary is usually defined in algebra as the indi-
cated even root of a megative quantity, and although it is clear
that there can be no quantity that raised to an even power will
be negative, the assumption is made that an imaginary can be
treated like any algebraic quantity.

Imaginaries are first forced upon our notice in connection
with the subject of quadratic equations. Considering the typical
quadratic St az4+b=0,
we find that it has two roots, and that these roots possess cer-
tain important properties. For example; their sum is —a and
their product is 8. We are led to the conclusion that every
quadratic has two roots whose sum and whose product are
simply related to the coefficients of the equation.

On trial, however, we find that there are quadratics having
but one root, and quadratics having no root.

For example ; if we solve the equation

2?—224+1=0,

we find that the only value of « which will satisfy it is unity;
and if we attempt to solve

?—2x4+2=0,

we find that there is no value of z which will satisfy the equation.
As these results are apparently inconsistent with the conclu-
sion to which we were led on solving the general equation, we
naturally endeavor to reconcile them with it.
The difficulty in the case of the equation which has but one
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root is easily overcome by regarding it as having two equal roots.
Thus we can say that each of the two roots of the equation

2?—2x4+1=0

is equal to 1; and there is a decided advantage in looking at the
question from this point of view, for the roots of this equation
will possess the same properties as those of a quadratic having
unequal roots. The sumn of the roots 1 and 1 is minus the co-
efficient of « in the equation, and their product is the constant
term.

To overcome the difficulty presented by the equation which
has no root we are driven to the conception of imaginaries.

12. An imaginary is not a quantity, and the treatment of
tmaginaries 18 purely arbitrary and conventional. 'We begin by
laying down a few arbitrary rules for our imaginary expressions
to obey, which must not involve any contradiction; and we
must perform all our operations upon imaginaries, and must
interpret all our results by the aid of these rules.

Since imaginaries occur as roots of equations, they bear a close
analogy with ordinary algebraic quantitics, and they have to be
subjected to the same operations as ordinary quantities; there-
fore our rules ought to be so chosen that the results may be
comparable with the results obtained when we are dealing with
real quantities.

13. By adopting the convention that
V=i =av -1,

where a is supposed to be real, we can reduce all our imaginary
algebraic expressions to forms where V=1 is the only peculiar
symbol. This symbol v —1 we shall define and use as the sym-
bol of some operation, at present unknown, the repetition of which
has the effect of changing the sign of the subject of the operation.
Thus in a vV —1 the symbol vV —1 indicates that an operation
is performed upon a which, if repeated, will change the sign

of a. That is,
a(V—-1)= —a.
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Prom this point of view it would be more natural to write the
symbol before instead of after the subject on which it operates,
(\/—_l)a instead of av —1, and this is sometimes done; but
as the usage of mathematicians is overwhelmingly in favor of the
second form, we shall employ it, merely as a matter of con-
venience, and remembering that a is the subject and the vV —1
the symbol of operation.

14. The rules in accordance with which we shall use our new
symbol are, first,
aV=14+bvV—1=(a+d)VvV—1. [1]
In other words, the operation indicated by v —1 is to be dis-
tributive (Art. 4) ; and second,
aVv —1= (Vv —-1)a, [2]
or our symbol is to be commutative with the symbols of quantity
(Art. 3).
These two conventions will enable us to use our symbol in
algebraic operations precisely as if it were a quantity (Art. 10).
When no coefficient is written before v/ —1 the coefficient 1
will be understood, or unity will be regarded as the subject of
the operation.

15. Let us see what interpretation we can get for powers of
v/ —1; that is, for repetitions of the operation indicated by the
symbol.

(V=1)=1 (Art. 8),
(V=1)y'=v 1, '
(V=1)t= -1, by definition (Art.18),
(V=1*=(V=1)V—=1=—+V =1, by definition,
V=1)y=—=-12 =1,

(V=1y=1v=1 =V—1,

(V=1)= (Vv =1y =—1,

and so on, the values V=1, —1, —+/—1, 1, occurring in
cycles of four.
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16. The definition we have given for the square root of a
negative quantity, and the rules we have adopted concerning its
use, enable us to remove entirely the difficulty felt in dealing
with a quadratic which does not have real roots. Take the

equation e 2+ 520, ay
Solving by the usual method, we get
r=1+V—14;
V—4=2v=1, by Art. 13 [1];
hence z=1+2v—1 or 1—2v —1.

On substituting these results in turn in the equation (1), per-
forming the operations by the aid of our conventions (Art. 14
[1] and [2]), and interpreting (v —1)? by Art. 15, we find that
they both satisfy the equation, and that they can therefore be
regarded as entirely analogous to real roots. 'We find, too, that
their sum is 2 and that their product is 5, and consequently that
they bear the same relations to the coefficients of the equation as
real roots.

17. An imaginary root of a quadratic can always be reduced
to the form a + b/ —1 where a and b are real, and this is taken
as the general type of an imaginary; and part of our work will
be to show that when we subject imaginaries to the ordinary
functional operations, all our results are reducible to this typical
form.

If two imaginaries a4+ bV —1 and ¢+dvV—1 are equal,
a must be equal to ¢, and b must be equal to d.

For we have a+bV—-1=c+dVv-1.
Therefore a—c =(d—-b)V—-1,

or a real is equal to an imaginary, unless a —c=0=d — b.
Since obviously a real and an imaginary cannot be equal, it
follows that a=c and b =d.
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18. We have defined v —1 as the symbol of an operation
whose repetition changes the sign of the subject.

Several different interpretations of this operation have been
suggested, and the following one, in which every imaginary is
graphically represented by the position of a point in a plane, is
commonly adopted, and is found exceedingly useful in suggest-
ing and interpreting relations between different imaginaries and
between imaginaries and reals.

In the Calculus of Imaginaries, a+b~ —1 is taken as the
general symbol of quantity. If b is equal to zero, a4+ bV —1
reduces to a, and is real; if a is equal to zero, a +b vV =1 re-
duces to bV —1, and is called a pure tmaginary.

a+b+V —1 is represented by the position of a point referred
to a pair of rectangular axes, as in analytic geometry, a being
taken as the abscissa of the
point and b as its ordinate.
Thus in the figure the position
of the point P represents the
imaginary ¢ + bV —1.

If b =0, and our quantity is
real, P will lie on the axis of X
X, which on that account is
called the azis of reals; if a=0,
and we have a pure imaginary,
P will lie on the axis of Y,
which is called the axis of pure imaginaries.

It follows from Art. 17 that if two imaginaries are equal, the
points representing them will coincide.

Since a and aV/—1 are represented by points equally distant
from the origin, and lying on the axis of reals and the axis of
pure imaginaries respectively, we may regard the operation
indicated by vV —1 as causing the point representing the subject
of the operation to rotate about the origin through an angle of
90°. A repetition of the operation ought to cause the point to
rotate 90° further, and it does ; for

a(v=1)t=—aq,
and is represented by a point at the same distance from the

Y
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origin as a, and lying on the opposite side of the origin ; again
repeat the operation,

a(V—=-1)p=—av -1,
and the point has rotated 90° further; repeat again,
a(vW =-1)t=a,

and the point has rotated through 360°. We see, then, that if
the subject is a real or a pure imaginary the effect of performing
on it the operation indicated by v/ —1 is to rotate it about the
origin through the angle 90°. We shall sce later that even when
the subject is neither a real nor a pure imaginary, the effect of
operating on it with vV —1 is still to produce the rotation just
described.

19. The sum, the product, and the quotient of any two imagi-

naries, a +b+V —1 and ¢+ d vV —1, are imaginaries of the typi-
cal form.

a+d0V—T+c+dV=1 =a4c+(b+d)V-1. [1]
(@+bV=1) (e+dV=1) =ac—bd + (be +ad)V—1.  [2]

a+bV—1_ (a+bV=1) (c—dV=1) _ ac+bd+ (be—ad)V=1

c+dV=1 (c+dV—=1) (c—dV—=1) c+d -~
_ac+dd  bec—ad
=eretayxe VL (8]

All these results are of the form A +B+vV—1.

20. The graphical representation we have suggested for
imaginaries suggests a second typical form for an imaginary.
Given the imaginary z+y+V/ —1, let the polar cosrdinates of
the point P which represents z 4y~ —1 be r and .

r i8 called the modulus and ¢ the argument of the imaginary.

VN
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The figure enables us to establish very
simple relations between z, y, , and ¢.

| » z=rcosop,
v x y=rsin¢;} [1]

r =VIFFF,
o= tan“%. } (2]
z4+yV—1=rcos¢+ (V—1)rsing
=r(cosp +V—1.sin¢), (3]

where the imaginary is expressed in terms of its modulus and
argument.

The value of » given by our formulas [2] is ambiguous in
sign; and ¢ may have any one of an infinite number of values
differing by multiples of =. In practice we always take the
positive value of r, and a value of ¢ which will bring the point
in question into the right quadrant. In the case of any given
imaginary then, r can have but one value, while ¢ may have any
one of an infinite number of values differing by multiples of 2.

The wodulus r is sometimes called the absolute value of the
imaginary.
ExaMmpLEs.

(1) Find the modulus and argument of 1; of V—1; of —4;
-2V —T1; of 34+3V—T1; of 2+4V—1; and express each of
these quantities in the form r(cos¢ ++V —1.sin¢).

(2) Show that every positive real has the argument zero;
every negative real the argument = ; every positive pure imagi-
nary the a.rgument'g; and every negative pure imaginary the

argument 3?" .

21. If we add two imaginaries, the modulus of the sum is
never greater than the sum of the moduli of the given imagi-
naries.
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The sum of &« +bV —1 and ¢ +dV =1 is a + ¢ + (b+d)V—1.
The modulus of this sum is v/ (¢ +¢)*+ (b4 d)*; the sum of
the moduli of & +bV—1 and c+dV—1 is V@ + & +VE + @
We wish to show that

Va4 +@+dR<Va+¥+VIE+d;

the sign < meaning ‘¢ equal to or less than.”

Now V(a+o)'+(+d) <Va+U+V+d,
if (4402 +(0+d) <a®+ U+ 2V(@+ ) (@ + @)+ + &,

that is, if ac+bdd < V¥ + d?d® + b + V&,
or, squaring, if

A+ 2abed + B¥d?* < 2+ @& + VP E 4+ Vd;
or, if 0 < (ad — be)?.

This last result is nccessarily true, as no real can have a
square less than zero; hence our proposition is established.

22. The modulus of the product of two imaginaries is the
product of the moduli of the given imaginaries, and the argumens
of the product is the sum of the arquments of the imaginaries.

Let us multiply

r(cosg, +V—1.sing) hy ry(cos¢y++V—1.singy); *
we get
7, 73[CO8 by COS by — 8in b, Sin a4V — 1(8in ¢, COS b+ €08 b, 8in bs)],
€OS ¢, CO8 ¢ — 8in ¢, 8in g = cos (b, + ¢p3),
8in ¢, COS ¢y + COS ¢, Sin g = 8in (b, + ¢bg)
by Trigonometry ; hence
1 (cos ¢, +V=T1.sin¢,) r, (cos ¢, + V=T. singy)
=nr[cos(d + ¢3) + V—1.sin(gi + ¢) ]

| Ny
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and our result is in the typical form, r,r; being the modulus and
¢1 + ¢4 the argument of the product.

If each factor has the modulus unity, this theorem enables us
to construct very easily the product of the imaginaries; it also
enables us to show that the interpretation of the operation V=1,
suggested in Art. 18, is perfectly general.

Let us operate on any imaginary subject,

r(cos¢ + V/ —1.sin¢), with vV —1,
that is, with 1 (cos% + v —1.8in 7—;)

The modulus » will be unchanged, the argument ¢ will be in-
creased by '_g, and the effect will be to cause the point repre-

senting the given imaginary to rotate about the origin through
an angle of 90°.

23. Since division is the inverse of multiplication,

r(cos ¢, + V—1. sing,) + 7;(cos ¢s + vV — 1. sin ;)
will be equal to

2 [o08 (1 — o) + V= T.sin(d — $)],

since if we multiply this by 7,(cosé,+ vV —1.sing,), according
to the method established in Art. 22, we must get

r(cosy + VvV —1.sing,).

To divide one imaginary by another, we have then to take the
quotient obtained by dividing the modulus of the first by the
modulus of the second as our required modulus, and the argu-
ment of the first minus the argument of the second as our new
argument.

24. If we are dealing with the product of n equal factors, or,
in other words, if we are raising r(cos¢ + vV —1.sing) to the
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nth power, n being a positive whole number, we shall have, by
Art. 22,

[r(cosp + V—1.5in$)]*=r"(cosné + vV —l.sinn¢). [1]

If r is unity, we have merely to multiply the argumfent by.u,
without changing the modulus; so that in this case increasing
the exponent by unity amounts to rotating the point represe.ut-
ing the imaginary through an angle equal to ¢ without changing
its distance from the origin.

25. Since extracting a root is the inverse of raising to a
power,

— » — . ¢
{/[r(cos¢+«/—1.sin¢)]=x/?(cos‘f—:+«/—1.sm;); (1]
for, by Art. 24,

[{'/T(COS%+\/—_1.Sin%)]n = r(cos¢ +V —1.sing).

ExAMPLE.

Show that Art. 24 [1] holds even when n is negative or
fractional.

26. As the modulus of every quantity, positive, negative,
real, or imaginary, is positive, it is always possible to find the
modulus of any required root; and as this modulus must be real
and positive, it can never, in any given example, have more than
one value. We know from algebra, however, that every equa-
tion of the nth degree containing one unknown has n roots, and
that consequently every number must have n ath roots. Our
formula, Art. 25 [1]. appears to give us but one nth root for
any given quantity. It must then be incomplete.

We bave seen (Art. 20) that while the modulus of a given
Imaginary has but one value, its argument is indeterminate and
may have any one of an infinite number of values which differ by
multiples of 2. If ¢y is one of these values, the full form of
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the imaginary is not r(cos ¢, + vV —1.8in¢,), as we have hitherto
written it, but is

r[cos(gy + 2mr) + vV —1.sin(¢o + 2mm)],

where m is zero or any whole number positive or negative.
Since angles differing by multiples of 2= have the same trigo-
nometric functions, it is easily seen that the introduction of the
term 2mar into the argument of an imaginary will not modify
any of our results except that of Art. 25, which becomes

Vr[cos(go+ 2mm) + ~/—1. sin(do + 2mr) ]
= {'/?[:cos (%’-{-m?%) + \/——_——l sin (%-f-m?n—#)]. [1]

Giving m the values 0, 1, 2, 3 .... , n — 1, n, n + 1, success-
ively, we get

b b 2r G o2m b 2Ty \2m
w oatw wtin 3y FHe-D
2
%z+2,,, %+—,;’5+2w,

as arguments of our nth root.

Of these values the first n, that is, all except the last two,
correspond to different points, and therelore to different roots ;
the next to the last gives the same point as the first, and the
last the same point as the second, and it is easily seen that if we
go on increasing m we shall get no new points. The same thing
is true of negative values of m.

Hence we see that every quantity, real or imaginary, has n

distinct nth roots, all having the same modulus, but with argu-

ments differing by multiples of 27
n

27. Any positive real differs from unity only in its modalus,
and any negative real differs from —1 only in its modulus.  All
the nth roots of any number or of its negative may be obtained
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by multiplying the nth roots of 1 or of —1 by the real positive
nth root of the number.

Let us consider some of the roots of 1 and of —1; for ex-
ample, the cube roots of 1 and of —1. The modulus of 1
is 1, and its argument is 0. The modulus of each of the cube

2 4 .
roots of 1 is 1, and their arguments are 0, —31’ , and ?7"; that is,
0° 120°, and 240°. The roots in question, then, are repre-

sented by the points Py, P, P, in the figure. Their values are

1(cos0 + v —1.8in0),

) 1(c0s120° + V—1.sin120°),
P, and 1(cos240° + V' —1.sin240°),
or 1, —3 +2 V=1, —3—2V=1.
P, The modulus of —1 is 1, and its
argument is =. The modulus of the
cube roots of —1 is 1, and their arguments are g, 1:;--1- 2?",

§+%r, that is, 60°, 180° 300°. The roots in question, then,
are represented by the points Py, P,
Py, in the figure. Their values are

», —_—
l 1}+~!2§ —1, -1, %"‘Js‘\/—l-

Py ExAMPLES.

(1) What are the square roots of
1and —17? the 4th roots ? the 5th
roots ? the 6th roots ?

cube roots of —8; the 5th roots of 32.

i an imaginary can have no real nth root: that
188 two real ath roots if n is even, one if n is
itive real Las one real ath root if n is odd, none
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28. Imaginaries having equal moduli, and arguments differing
only in sign, are called conjugate imaginaries.

r(cosp+V—1.sin¢), and r[cos(—¢)+V—1.sin(—¢)],
or 7(cosp — V—1.8in ) are conjugate.

They can be written z+y+v—1 and 2 — yvV'—1, and we see
that the points corresponding to them have the same abscissa,
and ordinates which are equal with opposite signs.

EXAMPLES.

(1) Prove that conjugate imaginaries have a real sum and a
real product.

(2) Prove, by considering in detail the substitution of
a+bv—1anda—b+v—1 in turn for z in any algebraic poly-
nomial in z with real coefficients, that if any algebraic equation
with real coefficients has an imaginary root the conjugate of that
root is also a root of the equation.

(8) Prove that if in any fraction where the numerator and
denominator are rational algebraic polynomials in x, we substi-
tute a+bV—1 and a — bV —1 in turn for z, the results are
conjugate.

Transcendental Functions of Imaginaries.

29. We have adopted a definition of an imaginary and laid
down rules to govern its use, that enable us to deal with it, in
all expressions involving only algebraic operations, precisely as
if it were a quantity. If we are going further, and are to sub-
ject it to transcendental operations, we must carefully define
each function that we are going to use, and establish the rules
which the function must obey.

The principal transcendental functions are €*, logz, and sinz,
and we wish to define and study these when z is replaced by an
imaginary variable z.

As our conception and treatment of imaginaries have been
entirely algebraic, we naturally wish to define our transcendental
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functions by the aid of algebraic functions; and since we know
that the transcendental functions of a real variable can be ex-
pressed in terms of algebraic functions only by the aid of infinite
series, we are led to use such series in defining transcendental
functions of an imaginary variable ; but we must first establish
a proposition concerning the convergency of a series containing
imaginary terms.

30. Ifthe moduli of the terms of a series containing imaginary
terms form a convergent series, the given series ts convergent.

Let ug+ 1, 4 uy + -+ + u, 4 e be a series containing imagi-
nary terms.

Let
uy = Ry(cosPy+ V=1.s8ind,), =R1(cos¢l+\/-_——l. sin®,), &c

and suppose that the series Ry+ R, + R;+ - + R, + .- is
convergent ; then will the series ug+ u,+ ug+ .- be convergent.

The series By 4 R, + -+ is a convergent series composed of
positive terms ; if then we break up this series into parts in any
way, each part will have a definite sum or will approach a defi-
nite limit as the number of terms considered is increased in-
definitely.

The series g+ u; 4 g 4 cooes Uy + ++o- can be broken up into
thet wo series

R,cos®, + R,cos®, + R,co8®; + ----- + R,co8d, + -+ 1)
and

V—=1(R,sin®y + R,8in®, + Ry8in®dy + ... + R, sin @, +----). (2)

(1) can be separated into two parts, the first made up only
of positive terms, the second only of negative terms, and can
therefore be regarded as the difference between two series, each
comsisting of positive terms. Each term in either series will be
» term of the modulus series By+ R, + By + -+ multiplied by
B quantity less than one, and the sum of n terms of each series
[m therefore approach a definite limit, as n increases indefi-

' Miely. The series (l), then, which is the abscissa of the point

M the given imaginary series, has a finite sum.
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In the same way it may be shown that the coefficient of vV —1
in (2) has a finite sum, and this is the ordinate of the point
representing the given series. The sum of n terms of the given
series, then, approaches a definite limit as n is increased indefi-
nitely, and the series is convergent.

31. We have seen (I. Art. 133 [2]) that
z, 2 P2
e'—1+I+g+§+ﬁ+ """ [l]

when z is real, and that this series is convergent for all values of .
Let us define ¢’, where z =z 4+ y v —1, by the series

PO P N A AT
e=ltitatnitat (2]
This series is convergent, for if z=r(cos¢+\/—'l.sin¢) the
series s oA
r
”i"‘?:*ﬁ*ﬁ"‘ -----

made up of the moduli of the terms of [2] is convergent by
1. Art. 133, and therefore the value we have chosen for ¢* is a
determinate finite one.

Write z 4+ yV/—1 for z, and we get

eHv1-1 +¢+!!l\/———1 + (x+y2!\/-——l)’+ (x+y3\<jl)’+ ,,,,, [3]

The terms of this series can be expanded by the Binomial
Theorem. Consider all the resulting terms containing any given
power of x, say @*; we have

.....
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or }%(cosy+ V—i.siny), by L Art. 134.
Giving p all values from 1 to «c we get
. 2 2,
etV = (cosy+\l—l.stny)(l+%+-2—!+3—!+z—!+ ----- )
=¢&* (cosy + Vv —1.siny), [4]

which, by the way, is in one of our typical imaginary forms.
If =0, in [4],

we get V1= cosy + V—1.siny, 5]

which suggests a new way of writing our typical imaginary ;
namely, -
r(cos¢ + V—1. sing) = re®~~1,

- | ST

— .

PN

32. We have seen that

e' + ’J——_l . e'e'\,——l ; .
let us see if all imaginary powers of e obey the law of indices;
that is, if the equation

is universally true. cosar t
Let u=rn+unV—1 and vr=x+y,V—1,
then "= en+ 9 -1 = ¢ni (cosy, + V—1.siny,).
e=ent "= en(cosyy + V—1l.siny,),
et = chen[cos (v, + ¥2) + V—1.sin(y, + ys) ]
=entan [eos(n+ ¥a) +V=1.sin(y; 4 ) ]
L X AR UR Y AW

-Qu#-‘

property of exponential functions holds for
8 for reals.

ExamrLz.

[ W dd when w and o are imagim_
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Logarithmic Functions.

33. As a logarithm is the inverse of an exponential, we ought
to be able to obtain the logarithm of an imaginary from the
formula for e+~ We see readily that

z=r(cosp +V—1.sing) = w7 +¢V-1,
whence logz=logr+ ¢V —1;
or, more strictly, since
z=r[cos (¢ + 2n7) + V—1.sin(¢y+ 2n7)],
logz=logr+ (¢o+ 2nw) V—1 [1]

where n is any integer.

Ifz=z+yvV—1,r=vVa*+ and ¢=tan‘1g;

whence logz=14%log (4 ¥*) + V— l.tan“,g. [2]

Each of the expressions for log z is indeterminate, and repre-
sents an infinite number of values, differing by multiples of
27V —1.

This indeterminateness in the logarithm might have been ex-
pected a priori, for

@™V 1= cos2x +V—1.8in2x=1, by Art.31.

Hence, adding 27V —1 to the logarithm of any quantity will
have the effect of multiplying the quantity by 1, and therefore
will not change its value.

ExAMPLE.

Show that if an expression is imaginary, all its logarithms are
imaginary ; if it is real and positive, one logarithm is real and
the rest imaginary ; if it is real and negative, all are imaginary.



Trigonometric Functions.
84. Ifz is real,
. 2 2 2
smz=z—ﬁ+ﬁ—ﬂ+ ..... M
cosz=1—3;’.+£_.z_'+ ..... 2]
by I. Art.134. 21 41 6l
If z=r(cos ¢ + V—1.sing),
the series of the moduli,
?, 7 7
T+g+'5-—'+:‘_—7+ """ ’
P, * "
1+2—!+4—!+a+ ----- ’

are casily scen to be convergent ; therefore if z is imaginary, the
series [1] and [2] are convergent. We shall take them as defi-
nitions of the sine and cosine of an imaginary.

EXAMPLE.

From the formulas of Art. 31, and from Art. 34 [1] and [2],
show that
eV = cosz 4+ v —1.8inz,

and e*V-1 = cosz— vV —1.sinz, for all values of .

35. From the relations
e'V=1=cosz + V—1.sinz,
e*V=1 = cosz — V/—1.sinz,

elJ:l + e—nJ-—l

we get 0082 = —————, [1]
elJ:l_e—lJ:l

sing=—--—"—— 2

W (2]

k.. values of #.
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Let z=z+y\/— .
eVi-y | o2V 14y

008(2-‘-![\/—1): )

= (cosz++ —1.sinz)e "+ (cosz—V/—1.sinz)e’
2 ,

by Art. 34, Ex.,

=cosze"ze—'— V—l.sinxe'—;—'- [3]

In the same way it may be shown that

sin(z+y V=T) = {cosz+ V1. sinw);:;:_geosz —V—1sinz)e
+ \/_—_-l.cosxe';e-'. [4]

o+ e?
2

If z is real in [1] and [2], we have

VI eV
é
cosx = —'*;e——,

=sinz

e SV o |
sinz:—ﬁ—z—e—\/—l.

If 2=y~ —1, and is a pure imaginary,
cosy\/—l =e'_+2_e:, [5]

siny\/—_1=e'—28-'\/——l; [6]

whence we see that the cosine of a pure imaginary is real, while
its sine is imaginary.
By the aid of [5] and [6], [8] and [4] can.be written :
cos(z4+yvV—1)= coszcosyV —1 — sinzsiny vV—1, 1

sin (z+y\/—1) = sinxcbsy\/—l + coszsinyV —1. (8]
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ExamPLES.
(1) From [1] and [2] show that sin*z4 cos®z = 1.
(2) Prove that
cos (u 4+ v) = cosucosv — sinusinv,

sin (¢ 4 v) = sinucosv + cosusinv,

where » and v are imaginary.

The relations to be proved in examples (1) and (2) are the
fundamental formulas of Trigonometry, and they enable us to
use trigonometric functions of imaginaries precisely as we use
trigonometric functions of reals.

Differentiation of Functions of Imaginaries.

86. A function of an imaginary variable,
2=z 4+yV-—1,

is, strictly speaking, a function of two independent variables,
z and y; for we can change z by changing either z or y, or both
z and y. Its differential will usually contain dx and dy, and not
necessarily dz; and if we divide its differential by dz to get its

derivative with respect to 2, the result will generally contain Z—Z,

which will be wholly indeterminate, since  and y are entirely
independent in the expression z+y+~—1. It may happen,
however, in the case of some simple functions, that dz will appear
as a factor in the differential of the function, which in that case
will have a single derivative.

87. In differentiating, the V—1 may be treated like a con-
stant; for the operation of finding the differential of a function
is an algebraic operation, and in all algebraic operations vV —1
obeys the same laws as any constant.
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ExAMPLE.
Prove that d(@V—=1)=2zV—1.dz;
and that dV—1.sinz= VvV —1. cosz.dz.
We have, by the aid of this principle,
if z=z+y V-1,
dz=dz+V—1.dy; (1]

if  z=r7r(cos¢+ V—1.sin¢),
dz = dr(cos$ + V—1.sin¢) + rdg (— sin  +V —1. cos )
= (dr +rV—1.d¢) (cosp + vV —1.sin¢). [2]

88. Let us now consider the differentiation of 2®, ¢, logz,
sinz, and cosz.
Let z=7r(cos¢ + V—1.sing),
then
7= =r"(cosm¢ + V—1.sinmg), by Art. 24 [1];
dz™ = mr~-'dr(cosm¢ + V' —1.sinme) + mr*dep (— sinm¢
+V=1.cosm¢),

dz™ = mr*~'[cos (m—1) ¢ + V—1.8in(m—1) ¢] (cos ¢
+ \/:i.sin4>)dr
+ mr=[cos (m—1) ¢ + VvV —1.8in(m—1)¢] (cos ¢
+V—1.sin¢) V—1.d¢,
dz™=mr*-'[cos (m—1) ¢ + V—1.sin (m—1) ¢] (dr
+ 7V —=1.d¢) (cosp + V—1.gin ¢),

dz® = m2™"dz, (1] by Art. 87 [2],
dzu
P mz~, (2]

and a power of an imaginary variable has a single derivative.
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8. ¥ z=z+yV—I,
e = ¢*(cosy +V —1.siny), by Art. 31 [4],
de* = e*dz(cosy + —1. siny) + €*(— siny
+v/—1.cosy) dy,
de* = e*(cos y +V —1. siny) (dz +V—1. dy),
de* = e*dz, m

de*

E =e'. [2]

ExampLE.
Show that da* = a*log a.dz.

40. If z=r(cos¢+/_1.sing),
logz=logr+ ¢V —1, by Art. 33,

dlogz:.grr_'. ‘\[—l_dd,:u’
r

(dr+7V—1.d¢) (cos ¢+ —1.sin$)

dlogz= —
r(cos ¢+ V—1.sing)
dlogz=d—:, [1]
dlogz _ 1
dz  z (2]
41, i Mt i by Art. 35 [2]
. sinz=——+——, . 2]
2v—-1 v
. eVl eVl
dsinz="—T—-__v/—1.dz
24/-1
v Va1
=£_‘;£'_dz, by Art. 85 [1],

dsinz = cosz.dz. [1]
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G.J:i_'_e—'n/—_l
-—
~/31 —zo/=1 ~=1 —s+/<1
e e V== g,
2 2vV—1
dcosz = — sinz.dz. [2]

“

COo82 ’

dcosz =

42. We see, then, that we get the same formulas for the dif-
ferentiation of simple functions of imaginaries as for the dif-
ferentiation of the corresponding functions of reals. It follows
that our formulas for direct integration (I. Art. 74) hold when =

is imaginary.
Hyperbolic Functions.
43. We have (Art. 85 [5] and [6])

ooz V=T = £,

and sinx\/—l:e.;eq\/—l,

e
where z is real. €te

is called the hyperbolic cosine of z,

z

and is written coshz; and 2e is called the hyperbolic sine

of z, and is written sinhx;

sinhz=e’—2e*=—\/—1.sinz\/:l-, 1]

008hz=e-%e_'=0083‘\/—1. [2]

The hyperbolic tangent is defined as the ratio of sinh to cosh;
and the hyperbolic cotangent, secant, and cosecant are the re-
ciprocals of the tanh, cosh, and sinh respectively.

These functions, which are real when z is real, resemble in
their properties the ordinary trigonometric functions.
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44. For example,

cosh’z — sinh’z =1 (1]
for cosh?z = e’_""_:'.:_.'*‘ e? \
and sinh?z = e_"_TM.
4
EXAMPLES.

(1) Prove that 1 — tanh*z = sech®z.

(2) Prove that 1 — ctnh*z = — csch*z.

(3) Prove that  sinh(z + y) = sinhzcoshy 4 coshzsinhy.
(4) Prove that  cosh(z + y) = coshzcoshy + sinhzsinhy.

45. dsinhz=a2—¢ " _€+e"
2 2

dsinhx = coshz.dz.

dz,

ExAMPLES.

(1) Prove dcoshix = sinhz.dz.
dtanhz = sech’z.dx.
dctnhz = — cschiz.dz.
dsechz = — sechxtanhz.dz.

dcschz = — cschzctnhz.dz.

46. We can deal with anti-hyperbolic functions just as with
anti-triconometric functions.

To find dsinh 'z.

Let u=sinh 'z,
then 2z = sinhwu,

dx = cosh u.du,
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du= co‘f:x w
coshu = /1 +sinb’y,  byArt.44[1],
coshu= V1 42,
- dx
dsinh !z = \/m- [1]
ExampLES.
Prove the formulas s
dcosh'z= T l-
dtanh™lz = —i‘t—-
dx
dsech™lz=— x_\/l_T—x’
desch o= — __d"”'—____
zVE F 1

47. The anti-byperbolic functions are easily expressed as

logarithms.
Let u = sinh™'z,
then z=sinhu= &= e"’
2¢=1¢"— l,
e“
2z =e*—1,
e —2ze* =1,

S —2zxe* + =14 2,
e —x=+=% ‘\/1—}-1‘?,

e"=a::t\/l+:t’;
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as e* is necessarily positive, we may reject the negative value in
the second member as impossible, and we have

e=z4 m,
u=log(z + V1 + 2%,
or sinh-'z = log(z + V1 +2%). [1]
ExavPLEs.

Prove the formulas
cosh~'z =log(z + Va'—1).

tanh“z=x}log;i:.

sech-'z = log(i-l- %’— l).

csch-lz = log(i +J}?+ 1).

48. The principal advantage arising from the use of hyper-
bolic functions is that they bring to light some curious analogies
between the integrals of certain irrational functions.

From I. Art. 71 we obtain the formulas for direct integration.

dr Y
- =sinla. 1
V1i—& ]
dz 1
—_— = ta 3 2
1+2 e (2]
dx -1
—— =sec'z. 3
f /2t —1 2]
From Art. 46 we obtain the allied formulas :
4% _ sinh-'z = log(z+ Vi+ o). [4]
V142
dz = cosh 'z =log(z + Va' —1). [3]

JF—1
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f dz =t.anh“a:=1}logl +z,

1—-2 l—2z

_dz
zV1 -2

z Vz'+1 m_lz_log( +\[:I)

= Slp—= —_— .
=sech™'z log(+ g l)

81

(6]

7]

(8]
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CHAPTER III.
GENERAL METHODS OF INTEGRATING.

49. We have defined the integral of any function of a single
variable as the function which has the given function for its
derivative (I. Art. 53) ; we have defined a definite integral as
the limit of the sum of a set of differentials; and we have shown
that a definite integral is the difference between two values of an
ordinary integral (I. Art.183).

Now that we have adopted the differential notation in place of -
the derivative notation, it is better to regard an integral as the
inverse of a differential instead of as the inverse of a derivative.
Hence the integral of fr.dx will be the function whose differ-

ential is fr.dx; and we shall indicate it by f Se.de. In our old
notation we should have indicated precisely the same function by
f JSr; for if the derivative of a function is fx we know that its
differential is Sr.dz.

50. If fx is any function whatever of z, fx.dx has an integral.
For if we construct the curve whose equation is y = fr, we know
that the area included by the curve, the axis of X, any fixed
ordinate, and the ordinate corresponding to the variable z, has
for its differential ydx, or, in other words, fr.dx (I. Art.51).
Such an area always exists, and it is a determinate function of z,
except that, as the position of the initial ordinate is wholly arbi-
trary, the expression for the area will contain an arbitrary con-
stant. Thus, if Fr is the area in question for some one position
of the initial ordinate, we shall have

rfx.dx = Fre+C,

where C is an arbitrary constant.
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Moreover, Fz 4 C is a complete expression for f Sx.dz; for if

two functions of z have the same differential, they have the same
derivative with respect to z, and therefore they change at the
same rate when z changes (I. Art. 38) ; they can ditfer, then,
at any instant only by the difference between their initial values,
which is some constant.

Hence we see that every expression of the form fx.dx has an
integral, and, except for the presence of an arbitrary constant,
but one integral.

51. We have shown in I. Art. 183 that a definite integral
is the difference between two values of an ordinary integral, and
therefore contains no constant. Thus, if Fu 4 C is the integral
of fr.dx,

I *fe.dz = Fb — Fa.
In the same way we shall have
f *fo.dz = Fb— Fa;

and we see that a definite integral is a function of the values
between which the sum is taken and not of the variable with
respect to which we integrate.

Since J: *fe.de = Fa — Fb,
f 'fx.dz = —I}z.dx.
ExaMpLE.

Show that j: ’ Jr.dx 4 I ffx.dx = j: tf‘xdx

52. In what we have said concerning definite integrals we
have tacitly assumed that the integral is a continuous function
between the values between which the sum in question is taken.
If it is not, we cannot regard the whole increment of Fz as equal
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to the limit of the sum of the partial infinitesimal increments,
and the reasoning of 1. Art. 183 ceases to be valid.

Take, for example, f d—-z.
-1 2

and apparently

I

1
Butfl-d—;oughttobe the area between the curve y = =

axis of z, and the ordinates corresponding to =1 and z= —1,

which evidently is not —2; and we

Y
see that the function a,l’ is discon-

tinuous between the values z= —1
and z=1.

The area in question which the
definite integral should represent is
easily seen to be infinite, for

“ds 1 4z 1
j:l ';'—e ],aﬂdj: ?—-E l,

and each of these expressions increases without limit as € ap-
proaches zero.

-1 O 1

53. Since a definite integral is the difference between two
values of an indefinite integral, what we have to find first in any
problem is the indefinite integral. This may be found by in-
spection if the function to be integrated comes under any of the
forms we have already obtained by differentiation, and we are
then said to integrate directly. Direct integration has been illus-
trated, and the most important of the forms which can be in-
tegrated directly have been given in I. Chapter V. For the sake
of convenience we rewrite these forms, using the differential
notation, and adding one or two new forms from our sections on
hyperbolic functions.
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fcosz.dx: sinz.
ftana:.dx: — logcosz.

fctnz.da: = logsinz.

=sin~'2.
Vi—2?
dz . —g
=sinhz=log(z +V1+2%).
So s

f\/;’”_ - = cosh 'z = log(z + V& —1).

do
—— _=tan z.
[iyg=ten's

_d_z__tsnhl +z

1—2 —z
f—d—z—l=sec"‘x.

zVa?
f;/:—-—-—-sech‘ :c——log( +\:)

dx
—— =—csch'z=—log(-+ —+l).
fx\/z’+l g(” J“”

f——dz— = vers~'z.
J VYV 23’—%”
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54. We took up in I. Chap. V. the principal devices used in
preparing a function for integration when it cannot be integrated
directly.

The first of these methods, that of integration by substitution,
is simplified by the use of the differential notation, becaunse the
formula for change of variable (I. Art. 75 [1]),

. dz
= (uDg be fuaz=fuBay,
j:u  uDyz becoming fu 3y y

reduces to an identity and is no longer needed, and all that is
required is a simple substitution.

(a) For example, let us ﬂndfd—: ViFlogz.
Let 1+4logz=z; then d;z=dz,
and fi-:\/l+logx=fz‘dz=§z'= $ (1 +1logz)l.

When, as in this example, a factor of the quantity to be
integrated is equal or proportional to the differential of some
function occurring in the expression, the substitution of a new
variable for the function in question will generally simplify the
problem.

(%) Required f e,_‘:”:‘.

Let e=y; then e*dz=dy,

dz _ _ edr _ dy
e+e> e&+1 P41

dx —
e+e”

and

dy _ B P -1
fl_'_y,_tan y=tan—e". .

(¢) Required | secz.dz.

1 CcOsS®

BeCT = —— = ——=

cosx cos’z
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Let z=sinz; then dz= cosz.dz,
cos’r=1—2%
cosz.dr__ (* dz l+z
foos’:r. —fl— —&og by Art. 53,
fsecxdx }logl *'smz_logtan LN
—sinz 4 2
ExAMPLES.

Prove that (l)fcsc:cdx }longc.'(;—:: log tang-
zV1 =2

—4coslp— ———.

‘\/1 = 2
Suggestion: Let z= cosz.

(2)

55. The formula for integration by parts (I. Art. 79 [1])

becomes
fudv = uv —fvdu. [1]

when we use the differential notation. It is used asin I. Chap.V,
(a) For example, let us find f z*log z.dz.
Let u=logz, and dv=a2"dz;

then du=d—z,
x
o+
and v—m,
fx“l pdz= 21| P gr=2" ) 1
o D em— L = — .
g 'n+10g n+1 n+1(ogz n+1)

(b) Required | zsin~'z.dz.

Let u=sin'z, and dv=2zdz;
dx

then du = —
vi—z
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«

and v= 3
fzsin“x.dz =Zgin-1z— 3 ohdy ,
2 vi—-2

fxsin“z.dx = gsin"z + $(cos™'z 4+ V1 — z*).

(¢) Required f(l ey

Let u = 2e*,
and =% .
(1+=)*
then du = (ze* + e*)dz = ¢*(1 + z)dx,
and V= — _1,
14z
ze® dx ze* re& e*
= — efdr= — = .
(1 +2) 1+a;+f S Pl el prap
ExAMPLES.
(1) f dx =sin"3+2wo
Vvi—3z—o V13
(2) ztan"z.dx:l—';—ftmr’x—t}:c.

zdz 1 1
@) f(l—z)’_ l——:c+2(l—:v)’

dx R z
1) (=22 - —V2az—Z + avers™'Z.
) f‘\/2ax—a:’ a
%) f‘\/?az—-x’.dx: x‘l-{-—sm"m a,

Suggestion : Throw 2ax — :c’ into the form a? — (z — a)*.

(6) de:log(x-{-sinx).
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7 (ztsinz,. z
™ 14 cosz a:ta.n2

Suggestion : Introduce g in place of z.

dz 1
® J 2ogay = "G oD (logo

(9) f8C%2) 4z = logz [log (log =) —1].

(10) sin” Z:)l:—ztanz-i-logcosz, wherez = sin~!'z.
dx r

11 —_— = _"_logta

an sin.’v+cos:z: \/3 g n(2+8)

sinzdr _ ggga-i-bcosz).
(12) a+bcosz b

o .
(ls)fx’—_+4:v+5- tan~! (z 4 2).
2dz _1, (1
(14) Tfa‘%(x—f—xf
23
(15)fx' 2?6 l°g(ar'+2)'
16) [=——2 1 tan1(%tana)
a

alcosdz + WPsinz  ab
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CHAPTER IV.
RATIONAL FRACTIONS.

56. We shall now attempt to consider systematically the
methods of integrating various functions; and to this end we
shall begin with rational algebraic expressions. Any rational
algebraic polynomial can be integrated immediately by the aid of

the formula "
fx*dz: L2
N n+1

Take next a rational fraction, that is, a fraction whose nu-
merator and denominator are rational algebraic polynomials.
A rational fraction is proper if its numerator is of lower degree
than its denominator; improper if the degree of the numerator
is equal to or greater than the degree of the denominator. Since
an improper fraction can always be reduced to a polynomial
plus a proper fraction, by actually dividing the numerator by the
denominator, we nced only consider the treatment of proper
fractions.

57. Every proper rational fraction can be reduced to the sum
of a set of simpler fractions each of which has a constant for a
numerator and some power of a binomial for its denominator;

that is, a set of fractions any one of which is of the form Z_—_)
z—a)™

Let our given fraction be 5

If a, b, ¢, &c., are the roots of the equation,
Fr=0, (1)
we have, from the Theory of Equations,
Fr=A(@x—a)(x—0)(x—c) e (2)
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The equation (1) may have some equal roots, and then some of
the factors in (2) will be repeated. Suppose a occurs p times
as a root of (1), b occurs ¢ times, ¢ occurs r times, &c.,

then Fr=A(x—a)’(z—b)' (x—c) - )
Call A(z—Db)1(z—c) o = ¢p;
then Fz= (z — a)’ ¢z,
Ja Ja
wmd B F Ta® g
Fz~ (z—ay¢z (z—a)¢z ' (z—a) ¢z
L ot
oy Goore
fx—i—:w
m is a new proper fraction, but it can be reduced

to a simpler form by dividing numerator and denominator by
z — a, which is an exact divisor of the numerator because a is a
root of the equation

fr—LP gz =0.
da
If we represent by f,z the quotient arising from the division
of fx — -"%qﬁz by z — a, we shall have
Ja

fr__¢a Sz
Fr (z—a)? (z—a) ¢z’

S L proper fraction, and may be treated

@—ay ¢z
precisely as we have treated the original fraction.
fia
SHiz  __ ¢a Siz

Heooe ooy G T Gm e

By continuing this process we shall get
fa hie ha S1a
Jo_ _da ¢a $__ 4. ta b
I_'a:_(x—a)’+(x—a)”‘+(x—a)"’+ ti—at o
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¢ by the aid of
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; Ll lalug the numerator by the

T vt L <

Al ol Nowks e treatment of proper

. oS TN mARS 8 olatod.
< S
- "y v b 'r."




Cuar IV EATIONAL FRACTINNR 1 ]

The equscaa (1) MY hawe wome oo ek, nk Wil 2w o

the fagors I 20 wil v vpeadal.  Ruppvew 2 OWEE P e
as o of (100 F oovurs ¢ Tomes & ey - B, &
then Fr=420— V" a—Bar— D\ 1t )
Call AF I =V = e
thea Fr= \l-ﬂ\"“\
. O =
and = _ Jr _3:—:‘ + ““
Fr  (x—uaYor (@r—uaVer (F—ul’¢a
Ta R
3 pred ]}—“;ﬁ
" —(.r—u)'+ (r—u)rex
aQ
o
—————— is & new proper fraction, but it can b reduved
@ —a)y e prol

to a simpler form by dividing numerator and denominator hy
Z — a, which is an exact divisor of the numerator beeanae o a a
root of the equation

o divialon

w0 troatad

14

h,
+E
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In the same way 5= can be broken up into a sct of fractions

baving (z — b)*, (z—b)*!, &c., for denominators, plus a frac-
tion which can be broken up into fractions having (z—c)",
(x—c)? ., &ec., for denominators; and we shall have, in
the end,

fr A 4, A B,
F_':t;_(z—a)'+(z—a)"'+ .... tie (z=0d)*
B, B
+(x—_w+ ..... +x 'b+ ..... +K’ [l]

where K is the quotient obtained when we divide out the last
factor of the denominator, and is consequently a constant. More
than this, A’ must be zero, for as (1) is identically true, it must

be true when 2= o ; but when x= o, % becomes zero, be-
cause its denominator is of higher degree than its numerator,
and each of the fractions in the second member also becomes
zero ; whence I{ =0.

58. Since we now know the form into which any given rational
fraction can be thrown, we can determine the numerators by the
aid of known propertics of an identical equation.

. . 3z—1
fml(:;i :‘ts.be required to break up [CERHCET)
By Art. 57,
3zr—1 A B C
G- E+D @@= z=1TzgD
and we wish to determine A, B, and C. Clearing of fractions,
we have
3z—1=A(@x+1)+B(z—1)(x+1)+C(x—1)%. (1)
As this equation is identically true, the coeflicients of like
powers of x in the two members must be equal ; and we have
B4+C=0,
A—-2C=3,
A—B+4C=-1;

into simpler
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whence we find A=1,
B=1,
C=—1;
and 8z—1 1 +xl 1 @)

@-1)(x+1) (@—1) z2—1 =z+1

The labor of determining the required constants can often be
lessened by simple algebraic devices.

For example; since the identical equation we start with is
true for all values of 2, we have a right to substitute for z values
that will make terms of the equation disappear. Take equa-
tion [1]:

32—1=A(@x+1)+B(z+1)(z—-1)+C(x—1)% [1]

Letx=1, 2=24M,
A=1,
then 22—2=B(x+1)(x—1)4+C(x—1)%;
divide by z—1, 2=B@x+1)+C(x—1).
Letz=1, 2=28B,
B=1,
then —z4+1=C(x-1),
C=-—1.
ExAvPLES.

(1) Show that when we equate the coefficients of the same
powers of  on the two sides of bur identical equation, we shall
always have equations enough to determine all our required
numerators.
922+ 92— 128 . . .
2) Break up =——— " into ler fractions.

(2) Break up @—3)=+1) into simpler fractions

59. The partial fractions corresponding to any given factor

of the denominator can be determined directly.
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Let us suppose that the factor in question is of the first degree
and occurs but once ; represent it by z — a.

B_ 4 fe

Fr z—a ¢z 1)
by Art. 57, where
Fzx
¢z =_——0,
so that Fz=(z— a)¢z.

Clear (1) of fractions.

Jo=A¢z+(z—a) fis. @)

As (1) is an identical equation, (2) will be true for any value
ofz. Letz=a,

Ja= Aga,
A= % 8)

a result agreeing with Art. 57.

Hence, to find the numerator of the fraction corresponding to
a factor (x — a) of the first degree, we have merely to strike out
Jrom the denominator of our original fraction the factor in ques-
tion, and then substitute a for x in the result.

If the factor of the denominator is of the nth degree, there are
n partial fractions corresponding to it. Let (— a)™ be the
factor in question.

fx —_— 4 A, As A,. l[lx
Ii_‘z_(z—la)'+ (:v—a)""‘+(x—a)""+ '''' +a;-—a+¢7v’ )
where Fz=(z—a)"¢x.

Multiply (4) by (# — a)*, and represent (a:'— a)* ‘FE':: by ®=.

Sz =4, + Ay(x — a) + A;(x — a)* + - + A, (z — a)*?
+ g (z—a)".
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Differentiate successively both members of this identity, and put
z = a after differentiation, and we get

A] = w,
4y=2'a,
A= 2—l! d"a,
A._ l QHI
..... ,
— 1 (n-1)
=G

Although these results form a complete solution of the prob-
lem, and one exceedingly neat in theory, the labor of getting
the successive derivatives of ¢z is so great that it is usually
easier in practice to use the methods of Art. 58 when we have to
deal with factors of higher degree than the first. So far as the
fractions corresponding to factors of the first degree and to the
highest powers of factors not of the first degree are concerned,
the method of this article can be profitably combined with that
of Art. 58.

60. As an example where the method of the last article
applies well, consider

3z —1 _4
z(z—2)(z+1) =

-2 z+41
A= [ 3z—1 l_%,

B
x

C

+ -+

b

(x—2)(x+1)
3z—1 _§
[:c(a:+1)1 6
3z —
[x(z——?)
3z—1 11 _.___é._l_. (1]

z(z—2)(z+1) 29; 6 x—2 3 x+1
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Again, consider

1 — 1 — A + B
1+ (z4V1)(z—V=1) z+vV—1 z— V=1
A_—_[; =——1 _v=1
z—vV—1k--vi 2vV—1 2

1 _ V=1 _ 1 _~N=1_ 1 (2]
1428 2 g4v—1 2 z-+v-1

61. Let us now consider a more difficult example, where it is
worth while to combine our methods.
241 .
(z—1)'(2*+1)
PH+l=(+1)(@P@—z+1)

=@+1) (-1 —V=3)(=z—1+4V-3),

To break up

241 _ 241 —_ 4
(z—=D'@=*+1) (z-1)@E+1) (@ —x+1) (z—1)*
112 4'13 A4 B C
+(a:—1)’+(x—l)’+:c—l+:c+l r—4—4V=38

D
- . 1
+x—§+f}\/?3- M
B—F 2?41 _1
TlE-D'(E—-z+1) .., 24
[ o +1 =
A’__(z+1)(x2—x+1) ,1_1’
c=[ Z+1 1 =1
L@e—1'(+1)(z—3+3V=3) fitivss 3
p=[ o +1 1 =L
LE—1)*(z+1) (e =3 —3V=3) Fet-ivss 3
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_1 _1
8 __ o 8 __1.Qz-1)
z2—4—4V—3 z—}+4V-3 3 2—z+l

Substitate these values and clear (1) of fractions.
24(z*+1)=24(2+1) (' —2+1) +24 43(z— 1) (2+1) (FP—z+1)
+244,(z—1) (2 +1) (2 —z +1) + 244, (z—1)* (3 +1)
(#F—z+1)+ (z—1)*(—2z+1) —8(22—1) (2—1)*(z +1) ;

1528—512% 4452 +628 — 512° +452 — 9 = 24 A,(z —1) (z+1)
@F—z+1)+244;(x - 1) (z+1) (P —x+1)+ 244,
(z—1%*(z+1) (P+z—1).

The second member of this equation is divisible by

(z—1)(z+1)(*—2+1),

therefore the first member must be divisible by the same quantity.

Dividing, we have

152 — 36+ 9 =24 4, + 24 Ay(z —1) + 24 A (= —1)%.
Letz=1, —12=244,,
4=,
and we get
152 — 362+ 21 =24 4;(z —1)+ 24 A, (z —1)*.
Divide by 2 —1;
162 —21=244,+24 4,(x—1).

Letz=1, —6=244,,
1
Aa= —Z,
152—15=24 4,(x—1).
Divide by 2 —1; 15=244,,

A‘=g.
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Hence
241 _ 11 1 1_1 5.1
(z—=1)}*E+1) (=z—-1)* 2 (x—1)> 4 (z—1)* 8z—1
1 1 1 1 1 1 )

24241 82—34—4V—3 3 z—4+3V—28

62. Having shown that any rational fraction can be reduced
to a sum of fractions which always come under one of the two

forms 4 and —=< 1 , it remains to show that these forms

(z—a)* z—a
can be integrated
To find
(w - a)"
let z=z—a,
then dz = dz,
and :

Adz dz _ 1 A 1

(z—a)* = (n—1) 2 (n_l) (o= a).-n (1]

let z2=2—a,
then dz = dz,
Adz _ dz _ _ _
and fx_a_Af7_Alogz_Alog(z a). [2]
Turning back to Art. 58 (2), we find
(Bz—1)dz _ dz dr _(dz _ 1
(z—-1)*(z+1) (z-1)? "Jz—1 Jz+1 z-1
+log(a=-—l)—log(.v+1)_.——— +1lo g’;i

Turning to Art. 60 (1), we have

et et Pt s,

= 4logx + glog(x — 2) — 4log(z +1).




Cmar. IV.] BATIONAL FRACTIONS. 49

63. If imaginary values come in when we break up our given
fraction, they will disappear if we combine our results properly
after integrating.

We know (Art. 28, Ex. 2) that if the denominator of our
given fraction contains an imaginary factor, (z —a — bvV—1)",
it will also contain the conjugate of that factor, namely,
(z—a+bV—1)" Moreover, since by Art. 59 the numerator
of the partial fraction corresponding to (z — a — bV —1)" will be
the same rational algebraic function of « + b/ —1 that the nu-
merator of the partial fraction corresponding to (x — a 4+ bV —1)*
is of @ — bV/—1, these two numerators must be conjugate imagi-
naries by Art. 28, Ex. 3. Hence, for every fraction of the

form A+BV-1 we shall have a second of the form
(z—a—bdV=1)
A—BN—1
(z—a +bV-=1)*
A+BV=1 4, __ 1 (A+BVY-1) |
(z—a—bN=1)" n—=1) (x—a—bvV=T1)*!
by Art. 62 [1].
» A—BYV-1 .. _ 1 (A— BV=1)
(z—a+bdV=1) (n—1) @—a+bVy= D™

Let (@—a+dV—1)"'=X+¥V-1,

X and Y being real functions of 2 ;

then (z—a—bV—1)*'=X-YV-1.

A+ BV—-1 dz + A—BN-1 4.
(z—a—bV=1)" (z—a+bV=1I)"

1 (4+BN-1)__1 .(A—B\/E)
T (n=1) X—YV—-1 (n—1) X+T¥V-1

1 (24X —2BY) [1]
T (n—1) (z"—2az +a + o)~

a result which is free from imaginaries.
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If n=1,

A+BV-1 . A—BvV-T1
z—a—bV—1 z—a+bVvV—1
fA+B‘/_ dz=(A +BV—1)log(z —a —bV—1),
z—a—bV by Art. 62 [2],

fA —BvV-1 - do=(4 - BYVZI)log(z—a+bvV=T1);
z—a+bV—1

log(z—a—bV—1)=4log[(z —a)*+b'] — v_tan-

we have the pair of fractions,

a

b
z—a

log(z—a+bdV—1)=4}log[(z —a)*+ '] + V—1.tan"? 2
A+BVTL 5 (A-BV-I1 g
z—a—bv—1 z—a+bv—1
=Alog[(a:—a)’+b’]+2Btan";cL, 2]

—a
which is real.
The form of [2] can be modified by adding a constant.

Hence

T b [ g r—a a—2x a—z
T htan! 2 =T otn 1T =T otn! 2% = tan12 =3
ghtan” S =gt =g b

Hence Alog[(z-a)'+b*]+213mn-12;_”‘ (3]
differs from [2] by the constant B, and therefore is a true
valueof (* A+BvV—1 P  A—BvV-1 dae
z—a—> \/_ z—a+bvV—1
Turning back to Art. 61 (2) we find

f(a:—:lt;‘-’(-zl'+ 1) =f(zix1)4—’}f(xti—z1)*—*f(_xd—x_1)"*

dz dz dz
Hf it w+1 ¥ x—é—&\/QS—*fx—§+§\/_—_§
I W S W G _

=Ty Gy i ey Ta a1 TieED

+ RAlog(x+1)—$log (2* —z+1).
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EXAMPLES.
2*2—38z+3 2.
a )f(a: 1) (z—z) ©=2+! o8

(2) f“’—’-‘—ldx z+§1<,g___

3) ———1=tan"w

z—1) p122+1
4) fs’— —%Og;:,g_'__z_*_—l——\/—gta e

—_— _L —l:_c Ll a-l-x.
®) d—z- 2w ot ez

© f(z’+l)gl:"+m=+l)='}l°ga7‘:-;-a;:_l+x/§ta _,2?_?;1

@ fx‘+z’ i +1+£ w2

()fz‘+x’+1 1}°gaa’+m+l

©) f(x_l)‘f’zz,+l),=—4(x‘ 5 — Hog(@—1)
+itanz——1 4 Hog(at+1).

4(#+ 1)

1 log —z‘\/_-f-l
z‘+1 4\/5 2422 +1

(10)
2«/ — [tan~!(z V2 +1) + tan~} (z V2 —1)].

1 Pz VZ41, 1 _,(m/é)
n =—=1 —+ tan X
¢ )f-%‘+l V2 s _aVEitl 2ve 1—2
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CHAPTER V.
REDUCTION FORMULAS.

64. The method given in the last chapter for the integration
of rational fractions is open to the practical objection that it is
often exceedingly laborious. In many cases much of the labor
can be saved by making the required integration depend upon
the integration of a simpler form. This is usually done by the
aid of what is called a reduction formula.

Let the function to be integrated be of the form 2=~!(a+-bz*y,
where m, n, and p may be positive or negative. If they are in-
tegers, the function in question is either an algebraic polynomial
or a rational fraction; if they are fractions, the expression is
irrational. The formulas we shall obtain will apply to either
case

Denote a + bx* by z; then we want § 2™=~'z?dx.

Let P=u
and ™dx = dv, and tntegrate by parts.
du = p?-1dz = dnpz*- -1 dzz,
V= :D_-’
m
fz""lz’da: = ﬂ —_ 2’.‘2 2™+ n=l -1 [1]
m m

This formula makes our integral depend upon the integral of
an expression like the given one, except that the exponent of z
has been increased while that of z has been decreased.

We get from [1], by transposition,

Jrrrirae =22 _ M (i,
bnp  bnp.
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Change m 4 n into m and p — 1 into p, whence m is changed
into m —n and p into p 41, and we get

g+l ‘m—n
lpde= — gm-n=1p+1 g 2
S n(p+1) n(p+1) » [

a formula that lowers the exponent of z while it raises that of z.
Since z=a + bx",

=2""1(a 4+ b2*),
hence

fx‘“‘z’dx =fz""z"‘(a+ba:")dx=a ™1 1dx

+ bfz-"-‘z'-‘dx;
therefore, by [1],

TL_DP (mnipids=a fomar-ida + b [at iz lda,
m m

fx--lzr-‘dz =22 _b(m+tnp) (mtn-1p-14g,
am

Change p into p +1.

fz--‘z'dz ”’“ b(m+"p+")fx"+""z'dx. (3]

Change m into m — n, and transpose.

_ zmr2rtl a(m —1p) —n-1
™12 dy = — ™ 2P dex. 4
f b(m + np) b(m+np)f [4]

We have seen that
fz"-‘z'dz = afx'-lz'-'dx + bfx""‘"‘z"‘dx,

and, from [1],
x™ 2P

— I m-1orde;
np np

bfx"‘*""z"’da; =
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hence

fx"“z’dx: fz-lz'-ldz+—“-"'—ﬂ a=~-12 dz,
np  mp

f -1 dz = +9P_ (piprde. (5]
m + np m+np

Change p into p + 1, and transpose.

e pdn = — 2 mAEWER (Cpiigy 6
f an(P+1)+ an(p+1) f [

Formula [3] enables us to raise, and formula [4] to lower, the
exponent of z by n without affecting the exponent of z; while
formula [5] enables us to lower, and formula [6] to raise, the
exponent of z by unity without affecting the exponent of z.

Formulas [1] and [3] cannot be used when m =0;

formulas [2] and [6] cannot be used when p= —1;

formulas [4] and [5] cannot be used when m =—np;
for in all these cases infinite values will be brought into the sec-
ond member of the formula.

65. Ifn=1, z=a + bz,
and our last four reduction formulas become
+1
fz--wazJ"’ _bOmtp+ l)f:c'zl'dz. (3]
am am
a-12¢tl a(m—1)
™ 12rdy = - ™3 2rdx. 4
S SRIGE 4]
f 2 orde = +-22_ (z=12r-1da. [5]
m+P m+P
fz""z’dz-—— amapt! m+p+lfx"“z’“dw [6]
alp+1) a(p+1)

If m and p are integers, and m >0 and p >0, a repeated use
of [5] will reduce p to zero, and we shall have to find merely

the fa:"‘" dz.
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If m<0 and p>0, [3] will enable us to raise m to 0, and
then [5] will enable us to lower p to 0, and we shall need

dz
nl, 'f—--
only ) —
If m>0 and p<0, [6] will raise p to —1, and [4] will then

lower m to 1, and we shall need
z

If m<0 and p<0, [6] will raise p to —1, and [3] will raise
m to 0, and we shall need f i

xz
fa:“‘" dx = E,
m
f% =logz,
dx __ dxr  _1
7 Jatie blog(a+ba:),

fdz f —_ 1 l()g (ﬂ.
z(a + bx) a x

Hence, when n =1, and m and p are integers, our reduction for-
mulas always lead to the desired result.

EXAMPLES.

a+bxr , U b b 1

—=lo —_—— — .

@ )fa:‘(a-i-bx) a® g x +a‘x ‘2a"’x’+3u’x’ 4axt
(2) Consider the case where n= 2, rewriting the reduction
formulas to suit the case, and giving an exhaustive investi.

gation.

x T

S )f(a-{-b:c’)’— 1@+ 05 | Bab(a + 52
1 a1, |0
* g ™" z\E'
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CHAPTER VI.
IRRATIONAL FORMS.

66. We have seen that algebraic polynomials and rational
fractions can always be integrated. When we come to irrational
expressions, however, very few forms are integrable, and most
of these have to be rationalized by ingenious substitutions.

If an algebraic function is irrational because of the presence
of an expression of the first degree under the radical sign, it can
be easily made rational.

Let f(x, Va + bx) be the function in question.

Let z2=Va+bz;
then 2"=aqa + bz.
nz"'dz = bdx,
n-1
d:c_"z - dz;
z=z" —a

b

Hence ff(z, Ya +bx)dx=’_;ff( ;a’ z)z""dz,

which is rational and can be treated by the methods of Chapter IV.

ExaAMPLES.
(l)fi/%—i’—idx:x+4 vz +4log(v/z—1).
p " S VA (L o ) i
(Z)f‘/(a“'b) = mtn)
® [a3/@+0) + V(z+a)]dz

_n(E+a)?t nay(zta)rt!

3
2n+1 n+1 +tiv@E+a)
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67. A case not unlike the last is f 1z, Vet Va T be)dz.

Let z=Vec+ Va+bz;

»=c+ Va+ bz,
(z*—c)"=a+ bz,

z=(F=0)"—a

b
dz:mn(z'—c)"‘z""dz
b
Hence f Sz, Ve + Va +bzx)dz
= llbi_l f[!Z' — cb)' - a, z](z‘ — C).-lz.-]dz.
ExaMPLES.
(1) Find ([—2% ___.
Ve + Va+ bz
(2) Find [—%& .
V1i+Vi—z

68. If the expression under the radical is of a higher degree
than the first the function cannot in gencral be rationalized.
The only important exceptional case is where the function to be
integrated is irrational by reason of containing the square root
of a quantity of the second degree.

Required f f(z, Va + bz + ) dz.

First Method. Let c be positive ; take out V¢ as a factor, and
the radical may be written VA 4 Bx + «*.

Let VA+Br+ =242,
A+Bx+22=22+2x2 4+ 22,
22— A4
r=
B—-2z

.
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__2(—Bz+A)dz
o= (B—-22)* '’

VAT B FE=atr=—2Dt4,
B—2z

and the substitution of these values will render the given func-
tion rational.

Second Method. Let ¢ be positive ; take out Ve as a factor,
and, as before, the radical may be written VA + Bz + z°.

Let VA+Br+z=+A+2z;
A+Br+ 2= A+2JA. 22+ 25,

r= 244 .2 — B,
1—-22
dx:?(\/A.z’—Bz+ A)dz
(-2 ’
VA+Br+ 2= +JA+22= \/"‘"’1’ B;"' V4,
and the substitution of these values will render the given func-
tion rational.
If ¢ is negative the radical can be reduced to the form
VA + Bx — ', and the method just given will present no
difficulty.

Third Method. Let ¢ be positive ; the radical will reduce to
VA + Bz + 2. Resolve the quantity under the radical into the
product of two binomial factors (z —a)(z— ), « and 8 being
the roots of the equation A + Bx 4 2?=0.

Let V(@ —a)(z —B)=(z—a)z;
(z—a)(z—B)=(z—a)'?,
—B—a
Rl L
dx:?z(é—a)dz
(1—2) "

VE—aE—B)=(a—waz=E=2,
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and the substitution of these values will make the given function
rational.

If ¢ is negative the radical will reduce to V.4 + Bx —a?, and
may be written V(a — z) (z — 8) where a and S are the roots
of & — Bx — A =0, and the method just explained will apply.

In general, that one of the three methods is preferable which
will avoid introducing imaginary constants; the first, if ¢ > 0;

a
the second, if ¢ < 0 and -_—_—c>0; the third, if c<0 and-:a-L_< 0.
If the roots a and B are imaginary, and 4= ?aé is negative, it

will be impossible to avoid imaginaries, for in that case
A+ Bx—2* will be negative for all real values of z.

69. Let us compare the working of the three methods just

. dx
iven by applying them in turn to the example | ——
given By sppying Pe) Versars
1st. Let V243z+P=2+42;
f dz _ (2(z*—82+2)dz2 _3—2z _ (" 2dz
N2 ¥8z+2 (83—22) #—38242 3—22
=—log(3 — 22),
dx (s
—  =—log(8+22z—2V2+3x+2)
f\/2+3z+x’ .
» = lo;
g3+2z—2\/2+3x+m’
1o 3+2x+2V2+3z+2°
= 2z + 42— 8 —12z— 42
=log[8 +2z+2V2 + 3z + 2*]. 1)
2d. Let V24 3z +27=4/2 +2z;
f dz =9 (y2.22 —82+4 /2)dz 1-2°
VZF 3z 42 (1—2%)% N2.2— 82442

°1—2z

dz 142
= = log . Art. 53
2f1 3 ( )
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f dr loe =2+ V2+3z+ 4}
V2 43z 4 22 z4+2—V2+3z+2°
=1 2422 V243242 4+24+32x+22—2
ST g 2 2.a+2—2—8z—2

34+22+2V2+3z+2°
2.2-3

=log(8 + 2z+2V2+ 3z+2°) — log(2y2—3),
or, dropping the constant log(2+/2 — 8),

=0g

dx
—_—  _=log(8+2zx+2V2+3z+2 2)
f#__ZHHx, g( VZ+3z+2). (

8d. Let V24 38z+2=V(z+1) (z +2)=(z+1)z;
dx —2dz 1-—-2° dz 142

=2 =2 =]
f\/2+3x+x’ f(l—z’)' —z f —a B

1+
f = log Vx+l_log\/a:+1+\/x+2
VZ+3z+2 1_\,x+2 Vz+1—Vat2

z+1+2‘\/2+3z+z’+z+2
z4+1—x—2

=log(3+2z+2V2+3z+ &) +log(—1),
or, dropping the imaginary constant log (— 1),

=log(83+4+2x+2V2+3z+2%. (3)

f dx
V2¥3z+ 22
ExampLES.

) dz 1 log Vitzz—Vi—z
f(2+3x)\/4—x"_4\/§ Vig2z 42—z

(2) é—bg(1}+x+«/x’+x)

Az _ 1, (b N
@) f\/h+bx+cx“ e °g<2\/ +m+m)
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70. If the function is irrational through the presence, under
the radical sign, of a fraction whose numerator and denominator
are of the first degree, it can always be rationalized.

Reqmdff( . aa:+b)dz

lz 4+m
Let 2=+ & +b
lz+m’
A= tD .

e+ m
b—m2"
I —a’
— n(am —bl)z""'dz

(*—a)* ’
and the substitution of these values will make the given function
rational.

x=

ExaMmpLE.
Stz W)

71. If the function to be integrated is of the formz™-!(a+-ba*)?,
m, n, and p being any numbers positive or negative, and one at
least of them being fractional, the reduction formulas of Art. 64
will often lead to the desired integral.

ExaMpLES.
S ;
(1 )f(l x’)l—ﬁsm x——_~(3+2z’).
_ 1-VIi—2 Vi—=
(”j;VTf_—“g z 7

® )f(2aa: xz)& (2“"’—“’2)*@: 3“)-{-36!’8111"\/2?;.

_ (22 +342%)
S )f(a )i (@ +ant
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72. We have said that when an irrational function contains a
quantity of a higher degree than the second, under the square-root
sign, it cannot ordimarily be integrated. It would be more cor-
rect to say that its integral cannot ordinarily be finitely expressed
in terms of the functions with which we are familiar.

The integrals of a large class of such irrational expressions
have been specially studied under the name of Elliptic Integrals.
They have peculiar properties, and can be expressed in terms of
ordinary functions only by the aid of infinite series.
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CHAPTER VII
TRANSCENDENTAL FUNCTIONS.

78. In dealing with the integration of transcendental functions
the method of integration by parts is generally the most effective.

For example. Required | z(logz)?dz.
Let u = (log2)?,
dv=z.dz;

2logz.dz
du = ——?—v

V= —

fz(log:c)’ = 311923:‘—)’ —fa:logx.dz = %’[(logx)’— logz + §].

Again. Required f e sinz.da.

u =sinz,
dv=edz;
du = cosz.dz,

v=¢€",

f e*sin z.dzx = e*sin x —fe’ cosz.dz,
fe’cosz.dx =e* o8 X +fe'sin z.dz;

whence f e“sinz.dx = ei(smxé—_cos_:c) s

and fe‘cos z.dz = eﬂsx_nx_;tﬁ)s_xl.
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ExAMPLES.
(1) o (loga)'az =1_’;%'1 l:(logx)"—— %‘%’%’
6logz 6 X
MCERT +1>*]

(2) %:‘%&S+log(l—w).

@ femv(—e=).az= L [ew(l —a=y sin"e"].

74. The method of integration by parts gives us important
reduction formulas for transcendental functions. Let us con-

gider f sin®x.dx.
u = sin" 1z,
dv =sinz.dz;
du = (n—1)sin""*z cos z.dz,
V= —CosZT;

fsin"a:.da: = —sin""'z cosx + (n —1) | sin™?*z cos*x.dz

=—sin"txcosz + (n —l)f(sin"":c —sin"z)dz;

fsin“z.dx = —! sin1z cosz 4+ "= lfsin"":c.dz. (1]
n n

Transposing, and changing n into n 4+ 2, we get

. 1 . n+42 .
"r.dr = —— n+1 f n+3p de. 2
fsm z e a:cosx+n+l sin*+iz.de. [2]
In like manner we get

f cos"z.dx = isinx cos*z 4 tlfcos"'x.dz, [3]
n

f cos"z.dx = — 1
n

If n is a positive integer, formulas [1] and [3] will enable us
to reduce the exponent of the sine or cosine to one or to zero,

] sinzcos"*'z 4 :—ﬁ‘fcos'“x.dx. (4]
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and then we can integrate by inspection. If n is a negative

integer, formulas [2] and [4] will enable us to raise the ex-
ponent to zero or to minus one. In the latter case we shall need

J: c“)’—:, or {22, which have been found in At. 54 (¢).
ExaMPLEs.
(1) |sin‘z.dr=— ﬂ‘-’”r“ﬂ(sin’x +§> +gx.
(2) foos‘a:.dz = sim:_%o_s’iv(cos,z + g) + léé (sinz cosz+ z).
- tanZ.
@) sm’ 2sm’ +§og n

(4) Obtain the formulas
f sinh® z.dz=1 sinh*-1zcoshz — B—1 sinh*-*z.dzx.
n n

fsinh"z.dx: 1 sinh*+'z coshxz— n+2 sinh*t*z.dz.
n+1 n+41

fcosh':v.dx: 1 sinh 2 cosh™-!z 4 ’i'———lfcosh“’ z.dzx.
n n

feosh"z.dz:— 1 sinhz cosh*'z 2T % n+2 cosh"t?z.dz.
n+1 n41

1}coshw —1 gcosha:-— 1
sinh®z coshx +1

(%)

smh8

75. The (sin-'x)"dz can be integrated by the aid of a reduc-
tion formula.

Let z=sin"'x;
then z=sinz,

dx = cosz.dz,

and f(sin":v)“dx:f"cosz.dz.
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Let u=2"
dv = cosz.dz;
du = n2*'dz,
v=8inz;

fz"cosz.dz =2z"sinz — nfz"“sinz.dz.

fz““ sinz.dz can be reduced in the same way, and is equal
to —2*1cosz 4 (n—1) § 2" 2cosz.dz;
hence

fz"eosz.dz =z"sinz + nz""'cosz — n(n—l)fz"”cosz.dz, [1]
or f(sin"x)"dx = z(sin"'z)"+ nV1 — Z(sin~'z)*!

—n(n—1) f (sin'z)*2dz. [2)

If n is a positive integer, this will enable us to make our re-
quired integral depend upon fdx or f sin~'z.dz, the latter of
which forms has been found in (I. Art. 81).

ExAMPLES.

(1) Obtain a formula for f (vers~1z)"dzx.

2) f(sin"x)‘dx:z[(sin";r)‘—4.3.(sin";r)"’+4.3.2.1]
+4 V1 —a*sin'z [ (sin'x)*—3.2].

76. Integration by substitution is sometimes a valuable method
in dealing with transcendental forms, and in the case of the trigo-
nometric functions often enables us to reduce the given form to

an algebraic one. Let it be required to ﬁudf( Jsinx) cosx.dx.
Let z=sinz,

dz = cosx.dx;

f(fsin x) cosx.dx =‘{fz.dz,
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In the same way we see that

[ (fcos2) sina.aa =—ffus if z=cosz,

and

f[f(sinz, cosz)] cosz.dz = f[f(z, V1=2%)]dz if z=sinz,
f[f(eosz, sinz)] sinz.dz:—f[f(z, V1=2]dz if z=cosz,
or, more generally,

ff(sma:, cosz) dz = ff(z, Vi—2z)

if z=sinz,

if z=cosz.

f J(cosz, sinz) de = —ff(z, Vi=2}) \/
Since any trigonometric function of  may be expressed in
terms of sinx and cosz, the formulas just given enable us to
make the integration of any trigonometric function depend on
the integration of an algebraic function, which, however, is
frequently complicated by the presence of the radical vV1—2%

77. A Dbetter substitution than that of the last article, when
the form to be treated does not contain sinx or cosx as a factor,

. z
=tanZ.
is z ng
This gives us dr= l—%—’,
sinz = 2z
. 142°
1—
008.’C=l+3;

. _ 2z 1-=-2\ dz
whence ff(smz, cosx)dx—2ff(1+z,, l+z’)1+z" 1]

As an example, let us find f 2
a+bcosz
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Here we have

fa +:zcosz=2f = l_-:_:,']=2fa +b+d(za—b)z’
+

(142 a+b1

__2 2z _ 2 tan_,( ’a—b.z)
a—> a+b @ — bF a+d

2
+ by I. Art. 77, Ex. 1.

dz 2 ’a—b x\ .
H = -1 —_— = b.
ence Py a’—-b’mn ( s tan2>,1fa>

78. f sin™z cos™z.dx can be readily found by the method of

Art. 76 if m and n are positive integers, and if either of them
is odd. Let n be odd, then

nl
cos"xr =cos" 'zcosz = (1 —sin’z) 7 cosz,

n-1
f sin®zcos*z.dx = | sin™z(1 — sin*z) T cosz.dz.

Let z =sinz,
dz = cosz.dz,

fsm :vcos'zd:v—fz"(l—z’) T dz,
which can be expanded into an algebraic polynomial and inte-

grated directly.
If m and n are positive integers, and are both even,

fsin"a: cos*z.dx = | sin®z (1 —sin’x)gdx.
sin™z (1 — sin’a:)i can be expanded and thus integrated by
Art. 74 [1].
If m or n is negative, and odd, we can write
cos"z = cos® 'z cosx, or sin™z=sin™ 'zsinz,
and reduce the function to be integrated to a rational fraction

by the substitution of
z=Cc08%, Or z=sina.

fsin"‘z cos*z.dz can also be treated by the aid of reduction

formulas easily obtained.
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. ftan“wdz and f E%:—z can be handled by the methods

of Art. 78, but they can be simplified greatly by a reduction
formula.
We have

f tan"z.dz =ftan"’x tantz.dz = f tan*~?z (sec’z — 1) dz

= f tan**zd(tanz) — f tan*1z.dz,

whence ftan"x dr = B0 l""—J‘t.s.n" g.dx; [1]

=t fa=S “"'Z::-i““’“ o= f e S

whenoef ta.(::z =T (n— l)ltan"“a: - tand'i’x. (2]
ExaMpLES.

10 8
. cos¥z  cos’z
(1) (sin*zcos’z.dz =228 % 8

10 8
@ fwzmdx_2sin'x_2sin‘z.
T8 7
sin®z.dz 2costz
8 | —= =222 — 2costa.
Vcosz 5
. . 4 . g
4 feo’ in‘z.de —BinZcosz/sin'z sin z_1 z.
(#) ) cos’zsin'a.da 2 s 12 8716
dz x
5) ) ——+ = log tan=.
©) sinz cos’z secx + log all2
dz cosz , 3 x
6) (—& _ = - 31og tanZ.
©) sin®z cos’z seex 2sin’x+2 8 n2
™ do -1 + ——— + log sinz.

tan®z 4tan‘z 2 tau
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Vb+a+Vb—a.tanZ

(8) dz = log 2.
a+beosz Vi—a®  \pFa—+Vb—a. tanZ
2
4+5tan£
dz 2 / 2
9 =Ztap-1 |
( )f5+4sina: stan \ 3 >

dx 1 .z z, 2
1)) ——mMM == 1 L4z .
( )f3sina:+ain2a: 5logsm2 ogcos2+5log(3+2cosx)
_5 sinz 8 1 x
11 = — —tan’!{= =)
f5+ cosz)! 95+ 4cosz ng%0g
an (5+4 )3 27

—c)tanZ 4-b
(12) dz 2 tan“l:(a ° M .
atbsinztcoosz Va—p—¢a NO—b—¢
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CHAPTER VIIIL
DEFINITE INTEGRALS.

80. In I. Art. 183, a definite integral has been defined as the
limit of a sum of infinitesimal terms, and has been proved equal
to the difference between two values of an ordinary integral.

We are now ready to put our definition into more precise,
and at the same time more general, form.

If fz is finite, continuous, and single-valued between the
values z=a and z= b, and we form the sum

(@1 — a) fa + (23— 2,) f2 + (23— @) ftg+ +++ + (Ta1— Tn_s) fTu_s
+ (b - n—l)fxu-l’

where z,, %;, #3---,_, are n — 1 successive values of z lying
between a and b, the limit approached by this sum as = is in-
definitely increased, while at the same time each of the increments
(%, — a), (s — ), etc., is made to approach zero, is the definite

integral of fz from a to b, and will be denoted by f ' fo.d.

If we construct the curve y=/x in rectangular co-ordinates,
this definition clearly requires us to break up the projection on
the axis of X of the portion of ¥ B
the curve between the points 4 A d
and B into n intervals, to multi-
ply each interval by the ordinate
at its beginning, and to take the Ay B
limit of the sum of these products ole 2z % Znd
as each interval is indefinitely decreased; that is, the limit of
the sum of the small rectangles in the figure, and this is easily
proved to be the area ABA,B,.

Now the area ABA,B,, found by the method of I. Chap. V.,

is [ f fz.df:lﬂb —[ f fx-d"”],=.'
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Therefore J: ' Sr.dz= [ f:c.d:c:l‘ Lo [ f fx.d:vlm. [1]

b
That is, f JSz.dz is the increment produced in ff.t.dx by

changing z from a to b.

It is to be noted that the successive increments (z,—a),
(2, — ), (23— =), etc., that is, the successive values of dx,
are not necessarily equal; and also, that if we multiply each
interval, not by the ordinate at its beginning, but by an ordinate
erected at any point of its length, the limit of our sum will be
unaltered. (v. I. Arts. 161, 149.)

81. It is instructive to find a few definite integrals by actu-
ally performing the summation suggested in the definition
(Art. 80), and then finding the limit of the sum.

(a) j: z.dz.

Let us divide the interval from a to b into n equal parts, and
call each of them dz.

Then ndz=>5—a.

Our sum is

8 = adx + (a+dx) de 4 (a+ 2dx)de + --- +(a + (n—1) dz) dz
=nadz+(1+2+4+3+--4+(n—1))ds?
=a(b—a)+ﬂ"2_'12dx*,

since ndxr = b — a, and the sum of the arithmetical progression

1+2+3+...+(n_1)__—ﬂ"2—_1).

ﬂ"i,;lldz* = 3 (W2 — nda?) = & = a)?_ (& —;)dw.

Hence S=2—"¢_1Y"% 4z
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As we increase n indefinitely, dxr approaches zero, and
y _ limit ['—a® _ (b—a)dz]|_b'_a*
J:”‘dx"dzéo[ 2 2 ]"2 2
3
(® f edz.
Let dz=2—=2.

n
8= e'dz + e dz 4 e+ ¥edr 4 oo 4 e Dirdy
=etdz[1 4 e* 4 4 4 e ... Jelr V]
but 14 e* 44 ... e D* jg a geometrical progression,
and its sum is
et —1_e -1
e —1 e+ —1

Hence S=z:¢:i

and f.e' dr = (e’ —e%) dg':%[;‘,ﬂl-] ;

but as dz approaches zero, e&dx

cerdz= (& —e*) e“_df-—l-’

1 approaches the indeterminate

form g; but since the true value of

[File )

s
f ecdr=e" —e.

(c) i‘ " cos*z.da.
Let dz = ;—', and let n be an odd number.
Then

§ =dz + cos’dz -dx + cos*2dz-dz + -+ + cos® (n — 2) dz.dz
+c08* (n — 1) dz- dz
= dz 4 cos’dzx-dz + cos’2dx-dx + --- + cos® (r — 2dz) - dz
+ cos® (r — dz) -dz
=dz 4 cos*dz-dx 4 cos’2dz -dx + .-+ — cos®2dx.dx
— cos’dx - dz,
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since cos (m — ¢) = — cos¢.

Hence the terms cancel in pairs, and we have left

S=dx
and j:cos‘z.dx = d!::.‘t() [da:] =0.
H
(d) .[ sin’z.dz.
Let dz=-Z, and let n be an odd number.

2n
S = 8in?0 . dx+sin*dz . dx+sin®*2dz - dx + --- +sin*(n—2)dz- dz
+sin® (n — 1) dz-dz

—sin'dz-dz +sin? 2dz-dx+---+sin’<’-2’ —-2da:)d.v+sin’<g—dz)dz

=sin’dz.dz+sin’2dz-dx+ .- - 4-cos’2dx-dx 4 cos’dz-dx,

since sin (g - ¢> = cos ¢.
Then S=da:+d:v+da:--.=”-—;ldx,
since sin®¢ + cos’¢p = 1.
dz
f =T_=
Therefore S iT3
3 .
and f sinz.dx ==
(] 4

o [

Here it is best to divide the interval between a and b into
* unequal parts.

Let the values z,, 2., 2, --- x,_; be such as to form with a and
b a geometrical progression.

For this purpose take ¢ = \’2, 8o that ag” =b.
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Then the values in question are ag, ag?, ag®---
~ag*i(g—1),

intervals are a (¢ —1), ag(¢—1), ag®*(¢—1)
and the sum

_a(g—1) ag(g—1) ag’(¢g—1)
f==a—+"a t 7o
=n(g—1).

+ e 4

75

ag*!, and the

ag"l(g—1)
aqn -1

To prove our division legitimate we have only to show that

each of our intervals, a(¢—1), ag(g—1) ---
approaches the limit zero as n increases indefinitely.

-
=3

ag*! (g—1),
Since

the limiting value of ¢ as n increases must be 1, as otherwise

limit q" would not be finite.
n=awo
Therefore A% [ag*(q —1)] = ‘“““ it Lagr(g—1)] =0.

n=x

‘We have then

j:'dz hmlt [S]

z
b
1
limit og (—l)
=g¢=1| logq 7

: b
since n logg =log o

But

For [q — 1] Ly
logq v-l lJ
q
1]
Therefore f d;x =logb —loga.

=1

e @=D]= T (g~ 1D)]

b L3
log
limit b limit{ g —1 b
- = lo| = —.
Q—l[logq(q 1):\ 8 t‘l—-l[logq:] loga
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EXAMPLES.

(1) Prove by the methods of this article that
e at —a®
j: @de= loga '
(2) By the aid of the trigonometric formulas
cos80+ cos26 + cos36+ - 4-cos(n—1)8
= %I:sinno ctng —-1-— cosnO],

8ind +8in26 4-8in360 4 --- +sin(n—1)0
=1}|:(1 —cosn@) ctn g —sin 1:9],

1]
prove that cosz.dz = sinb —sina,
1 ]
and f ginz.dz = cosa — cosb.
2
(3) Show that f sin*z.dz =0,
0

and that ‘f'coa’z.dm = 15'

Pt — gt

1
4) Showthatfa;"da;: p

Art. 81 (e).

, using the method of

82. When the indefinite integral can be found, the definite
1]
integral f JSe.dx can usually be most easily obtained by em-

ploying the formula [1] Art. 80, and this can always be done
with safety when fx is finite, continuous, and single-valued
between 2 =a and xz=0.

Of course, if the indefinite integral is a multiple-valued func-
tion, we must choose the values of the indefinite integral cor-
responding to x=a and x=>5, so that they may be ordinates

of the same branch of the curve y =ffx.dz.
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Consider, for example,

L The indefinite integral
dz ltet )

f Tro= tan'z and tan~'z is a multiple-vaiued function.
Indeed, y=tan~'z is a curve consisting of an infinite number
of separate branches so related that ordinates corresponding to
the same value of z differ by multiples of =. On the branch
which passes through the origin, when 2= —1, y=tan'z= —I;
on the same branch, when =1, y=tan 'z = ;—' On the next
branch above, when z=—1, y= tan“:c:%’—r; and when z=1,
Y= 54—' On any branch, when 2=—1, y=tan 'z =— i-' +nr;

and on the same branch, when z=1, y= E + nar.

1 dx — -1 _ 1 _1\—T7
Hence j;l_*.x,—tan (1) — tan~( 1)_4+

1 de _ 5w 3w _ =
or j:)l+:v’— 1 42
1
or .[llfx’-:;—l:*- nr-—(——-l-mr)::—r

© 13
By f JSx.dz we mean the limit approached by f Jedx as b
is indefinitely increased.
ExaMrLES.

(1) Work the examples of Art. 81 by the method of Art. 82

isinz.dx S
@ o cos'z =Vi-1.
dr _dai-
[ 2=

o a’+z"=ﬂ.
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®) f, %:j—z’ ita>0,and —Tifa<0, and 0 it a=0.

®f e“'dz;}z if a>0.

(7)fe“" sin ma.dz =<#m’ if a>0.

(8)}(: e~* cosmz.dx =a2-;-“~m" if a>0.

1 dx _ ¢ .
(9).£ 1+2xcosp+2* 2sing

-] dx _ ¢ .
(10).£ 142zcosp+2° sing

83. When fz is finite and single-valued between z=a and
z =", but has a finite discontinuity at some intermediate value
z=c

Y j:bfx.da: =‘£cf~z.dx +j:bfx.dx,
I\l’

1Y
E ! ! and therefore j Jz.dx can be found by
o @ r 5 X . * . o s
Art. 82 when the indefinite integral
ffx.dz can be obtained; but when fr becomes infinite for

z=a, or for x= 05, or for some intermediate value x=c,

special care must be exercised, and some special investigation
is usually required.

If fr is infinite when z=a and f bfx.dx approaches a finite
limit as e approaches zero, this limitﬂi‘s what we shall mean by
f bfx.dm; if 'bfx.d:c increases indefinitely as e approaches
;gro, we shall¢+;ay that j:hf.r».(l.t is infinite; and if [;fx.dz

neither approaches a finite limit nor increases indefinitely as ¢
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approaches zero, we shall say that f ‘fr.d.t is indeterminate.
It is in the first case only that J“ fr.:i.;: can be safely employed
in mathematical work. )

If fx is infinite when z =25 and fﬁtdx approaches a finite
limit as ¢ approaches zero, that limi; is the value of f 'fx.d.t.

If fz is infinite when z=¢, and each of the ex.pressions
f c]':'l:da: and f Jfx.dx approaches a finite limit as ¢ approaches
z::ro, the sum :; these limits is J:.f.t.dz. Should either or

both of the expressions,

.£ﬁ¢n J;&a,

fail to approach a finite limit as ¢ approaches zero, f .fx.d.r: is
either infinite or indeterminate, and cannot be safely \.med.

‘When the indefinite integral of fr.dr can be obtained there
is little difficulty in deciding on the nature of j"fz.da: in any
of the cases just considered, or in getting its vz.\lue when that
value is finite and determinate.

For example,

1.
(a) J: d?'” is infinite, since

dx ldz 1
f;-:loga: andj: ?=log(l) —logc._log;,

and increases indefinitely as ¢ approaches zero.

(d) ‘[ 9%_is not finite and determinate, for

1—2°

dr 142

1—x*_u°g1—x’
1-¢ dg 2—e¢
(] l—x’—%l()r( € )’

and increases indefinitely as e approaches zero.
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* dz . o .
(c) f m is finite and determinate, for

f =sin1¥%
\/a’ a’

1‘ 2% o sin 1% =€ _gin~10 = sin1 &
Var =3 a a

and its limiting value as ¢ approaches zero is sin~!(1) or g

? zdx
() I Ao is finite and determinate, for
-z

=t —a'—ga-o),
f%ﬂc’—%t’—%ﬂ,

and its limiting value as ¢ approaches zero is § — 3.

Ligm-tpestane

and its limiting value as ¢ approaches zero is — — 3§, and
consequently

f(l”‘;""" T R

84. When, as is sometimes the case, the indefinite integral
cannot be obtained, and the function to be integrated becomes
infinite at or between the limits of integration, it is only neces-
sary to investigate the limiting value of ¢f(a+¢) as e ap-
proaches zero if fr becomes infinite when z=a; of ¢f(b—¢)
if fx becomes infinite when z=25; and of both ¢f(c—¢) and
ef(c+¢) if fr becomes infinite when x=c. If each of the

b
values in question has zero for its limit, f Jr.dx is finite and

determinate, otherwise it is infinite or indeterminate.
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For, in order that the area EE'B'B should not increase
indefinitely as e approaches
zero, the rectangle AA'E'E,
whose area is ¢f(a -+ ¢), must
approach zero as its limit; and
the same reasoning holds good
for the other cases considered
above.

Let us apply this test to the
examples considered in Art. 83.

1dz limit [[¢
(a) ﬂ 7= because . 0[;]_ 1.
) f lda; o is indeterminate, for

(] —_—

limit € _limit[ e )_lmitl[ 17 _ 4
€e=0|1T_(1—¢?f €=0{2e—¢] €=0la_l 7

limit € o
(_-'—.0[1 -1 +‘)z:l =—4%

() f *__9%__ s finite and determinate, for
Vo -

limit(: € :I llmlt[ € ] limit |~ 1 J—o
=0 va—@—ol =lVia—al <=0 fa_,

€ -

and

(d) f ( 1————— is finite and determinate, for
limit «(1—¢) limit - 4 _
(_;_0[(1 —a -—e));J ¢_()[ (1—¢]=0,

and

(20 [(1 (_(t:)e)_)*]_ 2 [ +al=o0.
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Even when, as in the examples just given, the indefinite
integral can be obtained, there is a decided advantage in using
the very simple method of this article. For if the application
of the test shows that the definite integral in question is infinite
or indeterminate, the labor of finding the indefinite integral is
saved ; and if the application of the test proves the definite
integral finite and determinate, it follows that the indefinite
integral does not become infinite for the value of z which
makes the given function infinite, and consequently when the
indefinite integral has been obtained, the method of Art. 82
can be used without hesitation.

As an example, where the indefinite integral cannot be ob-
tained, let us consider at some length

jo' ‘<Iog;;)”dz.

If n is positive, (log;)' is continuous and single-valued be-
tween =0 and z=1, but becomes infinite when z=0. We
must then investigate the limiting value of z(logl)" as ¢ ap-
proaches zero. ¢

¢(log(l)‘ is indeterminate when ¢=0, but its true value is
easily found to be zero if n is positive, whether n is whole or
fractional. For positive values of =, ‘f l (log;:)"dx is, then,

finite and determinate.

If » is negative, call n=—m.
1 n
Then f (log-l-) dx =f]d_x.
o z o (lo 0_1)"
Sz
: 1
1 L)
log -
()

is continuous and single-valued from =10 to =1, but be-
comes infinite when z=1.
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limnit I €

€=, \ 1 ’
(=)

which proves to be ch;m:;) .__1——‘-_,:
'm(log 1 )

1—e¢

if m<1, this is zero; if m=1, it is 1; and if m>1, it

infinite.
1“ dz
(toe2)

z

We must, then, find

is, then, finite and determinate if m < 1, but infinite if m =
or m>1; and we reach the result that

"(10g 1\ dx
ﬁ(”ﬁ
is finite and determinate if » > — 1, but infinite if n=—1
ng—1.

ExaMPLES.
(1) Prove that
logz loga: dz 142
o 1—2 - 42 .I: log(l - a:)

are finite and determinate.

(2) Prove that

f‘ i iz ’ la::d;-, where m and n are integers, a

a:'"

1—

(8) Find for what values of nf (logz)"dx is finite a
determinate.

. dz, are not finite and determinate.
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(4) Find for what values of m and n f l:!:"‘(log:%:)“d:c is
0
finite and determinate.

1
(5) Show that ‘f 211 — z)*'dz is finite and determinate
if m and n are positive.

(6) Prove that j; ilog sinz.dz is finite and determinate.

(7) Show that the following integrals are finite and deter-
minate, and obtain their values :

© dz  _ =«

V-2 2

a dx =
o Jaz —2*

85. It was stated in Art. 82 that by f }x.dx we mean the
limit approached by j‘}x.da: as b is indeﬁt:itcly increased, and,
as we have seen, if th.e indefinite integral r JSx.dz can be found,
there is no difficulty in investigating the ;ature of f }.vd:c and
in obtaining its value if it is finite and determinate. a’l‘here are,
however, many exceedingly important definite integrals of the
form j'}x.dz whose values are obtained by ingenious devices
withou; employing the indefinite integral, and these devices
are valid only provided that the integral in question is finite and

determinate, since an infinite value not recognized and treated
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as such, or a value absolutely indeterminate, renders inconclu-
sive any piece of mathematical reasoning into which it enters.
If we construct the curve

y=/z, f}z.dz is the limit-
ing value approached by the
area ABB,A,, as OB, is in-
definitely increased; and in 0 a4, B, ©
order that this area should

be finite and determinate, it is clearly necessary that the area
BCC,\B, should approach zero as its limit as OB, and OC, are
indefinitely increased, however great the amount by which OC;
exceeds OB,.

That is, limit

b2z fmer]

must be equal to zero no matter how much more rapidly ¢ in-
creases than b.

Y

86. The investigation of the limiting value of f ff-.v.d:c, as b

b

and ¢ are indefinitely increased, is usually made with the aid of
the following important theorem known as the Mazimum-
Minimum Theorem.

If a given function of x is the product of two functions, one
of which v does not change its sign between x=1a and x=Db,
and if M is algebraically the greatest and N the least value of the

b

other factor u between x =2 and x=Db, ‘ uv.dx lies between
b *b %4 Y

M j v.dx and N j v.dx.
() a

To prove this theorem, let us first suppose that » is positive
between z=a and x=1>b. Now, M — w is positive for the
values of z considered, (M — w)» is positive, and therefore

v s *
J(}[— u)v.dex >0 and J[fr.d.n >J wv.dx. ¢))
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u — N also is positive for all values of z between ==« and
z=1>0, (v« — N)v is positive, and therefore

b b b
f(u —N)v.dz>0 and ruv.d.r: > Nf'v.d;r. (2)

1) 1] b
Hence fu’v.dx lies between Mf'v.da: and NJ v.de.

It is easy to modify this proof to meet the case where v is
negative.

(a) As an example of the use of this theorem, we will prove
jo. e=dz finite and determinate.

e is single-valued, finite, and continuous for all positive
values of z; if, then, we can show that f e—%dx has the limit
]

zero a8 b and c are indefinitely increased, ¢ remaining greater
than b, our proof is complete.

e can be written 2?¢= . 1 and L never changes its sign.

e z
As z increases x*¢—*" eventually decreases, and continues
to decrease toward zero as x increases mdeﬁmtely, as may be

proved by determining its value for z =

x? 2z 1
Weh = — | =0.
ewe 2] 2(525] 2 [»«L :

Hence, eventually the greatest value of a2*e—=" between x =15
and z=c is b*e¥, and the least value is cfe—".
Therefore, by the Maximum-Minimum Theorem,

cdx ¢ dx <dx
» > zr —c?
ble- L >j:x’e- o > ce et

bﬂe-s*(l_l > fce—-"d.c>c’e—"’ 1_1.
b ¢ b b ¢

As b and c are indefinitely increased, the first and third mem-
bers of our last inequality approach the same limit, zero. Con-

vequently the limiting value of fee—ﬁda: is zero, and
(]
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r e*'dx is finite and determinate.
«/0

o0 .
sin az
" .dx.
x

(b) Let us consider f
0

8Inaz is equal to @ when x=0, and is single-valued, finite,
z
and continuous for all positive values of z.

By integration by parts,

f sma:cdx= _ cosax_l cosax ..
x ax a z?
Therefore
I“ sinaz . _ cosab_cosac__l_ c_oga_z.dx
9/ x ab ac aJs
As b and ¢ are indefinitely increased, oosba b nd co:cac

approach the limiting value zero.
% does not change sign between x=>5 and z=c, and the

greatest value of cosax is 1, and its least value is —1.

Hence lf fﬁa—xd >_1f’_’1§',
by &

1 1 ° cos ax 1 1
==z de>—[=—=)\:
or b c>£ o > (b c)’

Cos (.

dxz as b and c¢ increase is
sm ax

and the limiting value of f

zero. The same thing is true ofj dz; and therefore

f sma:vdz is finite and determinate.
() x

(c) f cos(a?)dx is finite and determinate.

For cos (2*) is single-valued, finite, and continuous for all
positive values of x; and it is not difficult to prove that

j;ccos(:c”) dx approaches the limit zero as b and ¢ are indefinitely

increased.
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We have
fcos(a:’)da: j‘ 2a:cos(a:’)dx [sm(a:’) *f sm(:c’)d:c

The limiting value of sin(c?) —E—“-n(bz) b and ¢ are in-

2¢ 20 R
creased indefinitely is zero; and the limiting value of f sin i.a z*) de

can be proved zero by the method followed in (b).

EXAMPLES.
sinax

(1) Construct the curves y=e¢=; y= ; y=cos(2?).

(2) Prove that the following integrals are finite and deter-
minate :

“ sin?z z * e~**gin
ﬁ 02 de, S:Tnz— . dz, jo' LTI, e,

f e **cosbz.dz, f e =™, dx, ﬁae"'g.dx,
flog(e'+l>

(3) Show thatf z*e"*.dz is finite and determinate for all
0

values of n greater than —1.

87. When we have occasion to use a reduction formula in
finding the value of a definite integral, it is often worth while
to substitute the limits of integration in the general formula
before attempting to apply it to the particular problem.

o obdx
For example, let us find jo‘ —— z’.
‘We can reduce the exponent of z by [4], Art. 64,
-1,p — —-z”l a (m_ n) fx-—u lz,dx.
fa:" 2de = b (m + np) b(m+np)
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For our example this becomes

fz‘"(a’—z’)‘*dx: w"j::;:")l_ai(zl? z""(a’—r’)“dx.

z™-2(a— ) -0
—m+1 :

When 2= 0, and also when z=a,

Hence
[ty tae= w(m—2) —12) -3(a? — o) "hdz;
0 m — (]

B0t x2\—h =9 . a2t (it — 2yt
j;z‘(a ) baz GaJ‘:z‘(a o)tz
=%.3 . (2a— 2y}
=22 afoz*(a )tz
=§-.§-l-a‘ “ dx
6 4 2 o Aol —
« #dz 1 3 5 ma
Therefore ov—‘l’—_—x’_é.z.g._z_.

EXAMPLES
*_odx =2 4.
(l)j; —— =3 5a.
a 2
@ [VE—Fa =T
° ’— . =l.1ﬂf
(8) j;x’\/_a Fdo=y 7

4) ﬁlf(a’—f)i-dw=% . 8 . wal.

16
(5) stin"x.dz = 132546 n:; 1. g when 7 is even,
=246...(n—1 when n is odd.

3.5.7...n
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- -
(6) Show that j; ! cos*z.dz = f * sin"z.da.
0

! gde _1.85...2n—1) =
7 = . —
( ) j: -\/l._x’ 2.4.6...2n 2

Suggestion : let = siné.

1ghtde  2.4.6...2n
8
()f\/1_ T 8.5.7.. (2n+1)

(9) From Exs. 7 and 8 obtain Wallis’s formula
®_2.2.4.4.6.688...

2 1.8.8.5.5.7.7.9..
Suggestion : f ld fl m”‘dx 1ot +idy
VI=2 Vi—a Jo VT2
88. When in finding f tfx.dx the method of integration by

substitution is used, and y =Fz is introduced in place of z, we
can regard the new integral as a definite integral, the limits of
integration being Fa and Fb, and thus avoid the labor of re-
placing y by its value in terms of z in the result of the indefinite
integration.

Let us find foe"“\/ 1 —é* . da.

Substitute  y=e~.
dy = ae*dzx.

Hence fe“\/l—e"‘.d =}lf\/1—?.dy.
When =—o, y=0, and when z=0, y=1.

—_— 1
Therefore fe“'\/l —e¥ . dr = éf V1 —y’.dy=4_"";.
® 0

There is one rather rare class of cases where special care is
needed in using the method just described. Itis when y has a
maximum or a minimum value between z=a and x=">, say
for z=c¢, and z is a multiple-valued function of y.
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For suppose y a maximum when x=c, thep as x increases
from a to b, y increases to the value Fc, and then decreases to
the value F'b, instead of simply increasing or decreasing from
Fa to Fb. If z is a single-valued function of y, and ¢(y)dy is
the result of substituting y for « in fr.dz, ¢y is a single-valued

Fy Fe »n
function of y, a.ndf¢y.dy = f dy.dy +f¢y.dy, and there is
Fa Fa Pe

»d 13
no error in using | ¢y.dy for r fr.dx. Bautif z is a muitiple-
Fa Ya

valued function of y, it will always happen that when y passes
through a maximum, we pass from one sct of values of = to
another, and therefore from one set of values of ¢y to another,
and in that case it is necessary to express our required integral

Fb
as f ;y.dy +f¢y.dy, taking pains to select the correct set of
Fas Pe

values for ¢y in each integral.

If y is a minimum between z=a and x=1>, essentially the
same reasoning holds good.

A couple of examples will make this clearer.

(a) Take "'_x._(_k_t—"
°\2ar —

Let y=2ax —a®. Then %:2((;—::):0 when z=a.
ﬂ= — 2, and y is a maximum when = a.
M —_—

r=a+ Vai—y,

dy
de=x —
2\/a’-—y

Since %'l is positive from =10 to x=a, and negative from
z

z=a to r=2a, dx=—i~y— and z=a— Va*—y from
2Va¥—y
dy

z=0 to r=a, and dz=— ——" —
2Val—y

,and r=a+ V& —y

from z=a to x=2a.
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Hence o
i"‘ zdz e xdx + B pdx
:c* °\2ax —a* JeN2az—2?
1 (%q— — +Vaf—
=§fa Va? y-dy a? t/dy
Vay — ¢ 2 Va’y e
Ll (Te=Va—y g 41 fa_+_u .y
2h Vay—g Jaty
a2
= (289 _ _ ra. (Ex. 7, Art. 84)
Va'y -y
dJ dx
® j; (sinz+cosa;)’.
Let y=si dy i
y=sinz 4 cosx. dx:cosx—sm:v:O when z==
f—é’-—mnz—cosz:— 2 when z=£- Therefore y has

& maximum value V2 when z=i’,

y=sinz 4 cosz = \/E_cog(i - >,
z="—cos!-L, dz = dy .
V2 \/2 7

Since % =0 and g%< 0 when x=§, it follows that g—z is

'S

positive from z =0 to 2 = '-E, and negative from z =E toz= ’2'

Hence we have

_ dx 3 z
.f(sin.v + cos z)? —jt:(sina: + cosz)’ +j,:(sina: + cosz)?
1

=f _ 4y _ ‘__dy_=2f Y.
W V2= Jui V2 —¢°  PV2Z—
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Let X —siné;
V_é 9

ﬂy,—\/'i%’—yﬂ: %j:csc’&w= %’

3 dz 1
J;(sinx +cosz)

ExAMPLE.

ol dx
(1) Show that j‘:m—w-

89. Differentiation of a definite integral.

We have seen in Art. 51 that a definite integral is a function
of the limits of integration, and not of the variable with respect
to which we integrate ; that is, that j"fx.dx is a function of a
and b, and not a function of z. Stri;t.ly speaking, j: }x.dx is

a function of a and b, and of any constants that fxr may con-
tain, where by constant.we mean any quantity that is indepen-
dent of .

If the limits @ and b are variables, they are always indepen-
dent of the z with respect to which the integration is performed,
which must from the nature of the case disappear when the
definite integral is formed, as it always may be in theory, from
the indefinite integral ; and this assertion holds good even when
the same letter which is used for the variable with respect to
which the integration is performed appears explicitly in the
limits of integration.

Thus if we write | sinz.dz, the z in sinz.dz and the = which
0

is the upper limit of integration do not represent the same
variable, and are entirely unconnected. Indeed, the former z
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may be replaced by any other letter without affecting the value
of the integral. For

f ’sinz.d:v =f’sin 2.dz=1—cosz.
0 0

Let us now consider the possibility of differentiating a definite
integral.
[ ]
Required Daf S(x, a) dx, where a is independent of z, and
a and b do not depend upon a.

We have
D, [ (@,a)iz = A‘i”;“o[-f oot e ~fre dx]
lmit I: f’ 1@, a+ t) —f( a)] s
= (it L e b))
Hence  D. f f(z, o) do= [ [Duf(z, o)) da, [1]

and we find that we have merely to differentiate under the sign
of integration.

The truth of the converse of the last proposition can be easily
established, and we have

f [j:}(x, a)dx]da=f[ff(x, a,aa]dz, (2]

or even

f ‘[ [z, da:]da =f '[ S Fa, o) do.] d,  [3]

if a, b, ¢, and d are entirely independent.

Suppose now that we are dealing with variable limits of
integration.
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Let us find first d%fffzdx
Let f fo.de = Fiz, then | fe.dz=Fz — Fa; and since by
e . N d
definition %’x = fr, it follows that % = fz.
Hence ad; f }'x.dz = ‘1@ = fz. [4]

In the same way it may be shown that
d f‘
— dr = — fz.
=) 7 J2 (5]

Let us now take the most complicated case, namely, to find

1]
di f Jf(z, a) dz, where a and b are functions of a.
ad/s

Let f f(,a) dz = F(z, a);
then w= f f(z. o) dz = F(b, a) — F(a, a),
du_ dF(b,a) _dF(a,a)
and da_ da da

but as b and a are functions of a,

‘E%_“) = D,F(b,a) % +D.F(b,a),

and ) p Fa,0) 9+ D.Fa,a),
by I. Art. 200.
D,F(b,a)=[f(b,a),

D, F(a,a)=f(a, a).
du _ (b a) — a a db _ a da
Hence :h;_D‘[F(b’ )— F(a, a)]+ f(b, )da Na, )da’
or

e it 100 B2
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ExAMPLES.
(¢)) %j::in (z+y)de =(z+ 1) sin (zy + y) —siny.

s
d =1
@) —’oz’da:_s
d (*—
¢)) d—-¢£\/l—coe¢.d¢=e‘\/l — cose?

90. When the indefinite integral cannot be found, the prob-
lem of obtaining the value of the definite integral usually be-
comes & more or less difficult mathematical puzzle, which can
be solved, if solved at all, only by the exercise of great inge-
puity. Some of the results arrived at, however, are so impor-
tant, and some of the devices employed so interesting, that we
shall present them briefly here. But we must repeat the warning
that most of the methods are valid only in case the definite
integral is finite and determinate; and erroneous results have
more than once been obtained and published when a little atten-
tion to the precautions described in Articles 83-86 would bave
prevented the mistake.

91. Integration by development in series.

(a) f 1°‘” (v. Art. 84, Ex. 1.)
l-l-x =(l—z) =142+ 42+, ife< 1.
x:(’f‘_‘:;.tzl:c=‘£l(log:::-§-:::log:v;+:::"log:::-{----)d:::.

‘fz-logz.dx=- ﬁl)’ (v. Art. 55 (a).)

Therefore

[ (g )2

(v. Todhunter’s Trigonometry, Chag. XXIII., Ex. 1.)
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® f 1og<e' +l)da:. (v. Art. 86, Ex. 2.)
(] e —1

log(e"":) log(:+2 )—log(l+e")—log(l—e')
s_er e et [ee_gE_ X et
ety Ty ( TR T8 4 )
(1. Art. 130.)

Hence

(sl oot

—2(1+ +ot )

+)es

1,1,1,1 _n
But I;+§,+£T,+7—,+' =3
(v. Todbunter’s Trig., Chap. XXIII., Ex. 1.)
Therefore f log (‘, + l) "J
ExaupLES.
logz .. __ ™
M f 1+z T2

A o4,

@) f loga:
3) f dz log<l+m>

; d T
4 [ =7
( ° V1 —ksin’gp 2

o

Ve (13V
MORSIGHR

1.3.4
2.4,

+

)

)k‘+---] it < 1.
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() f ;\/1?1??{:?3. g = ;_'[1 - (%)’%’ - C_j)_akf

1.3.5\* k8 .
—(m) g—'"] if k’< 1.

92. Integration by ingenious devices.

(a) j;  log sinz.dz. (v. Art. 84, Ex. 6.)
Let u= j: ’ log sinz.dx.
Substitute y= g —z.

= —flog cosy.dy = £ ' log cosx.dx.
H

: ;
2u= j;(logsinx+logcosz)d.v=£ log (sinz cosz) dz

= I;log(-m%c).dx

log (2) +£s log sin 2 z.dz

=
T2
T 1" .
=—3 log (2) + 5.(: log sinz.dz.
‘f log sinz.dx =f-’log sinz.dz +f log sinz.dz
0 L 4
3

=u +f'log sinz.dz.
3

Substitute y=wr—=u,
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and

...5—->

L 4
- 3
logsinz.dz:—' logsiny.dy:jo‘ log sinz.dz=1w.
3

Hence 2u=—§log(2)+n,
and
5 3 .
u _ﬁ log sinz.dz _j:log cosz.dz=— 3 log (2). 1]
®) j; “etdz. (v. Art. 86 (a).)
Let u=f”e"’dz, and let z=ay;
(]

then = f ae—="'dy =f ae~*'<dz,
o

ues = | ae~0+dz,

ufe—c’da = u? =f’(£°ae_(l+ﬂ)ll dd) dx, by [3]’ Art. 89.
. o

But
.[ e da = 5 ¢ -ll-a:'.
Hence u’=%£°l£5,=i,
ad  fTeda=lvi. (2]
© j: ) “‘“x””‘.dx. (v. Art. 86 (b).)

We have %: e~**da if z>0. (Art.82,Ex.6.)
0
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Hence

f" sinmz
h x

=5
=f°(f.e‘“ sinm:c.da:) da, by [3], Art. 89.
0 (]
* mda
o =f e (Art. 82, Ex. 7.)
erefore
f‘sinmxdz: T itm>0
o z 2
=T itm<0 [ (31
2
= 0 ifm=0 by Art. 82, Ex. 5.
ExampLEs.
(1) f'zlogsinz.da; =_’§1og(2).
[
a 1\ dx
~ = 2).
(2)j;log(a:+x)1+z_' x log (2)
Suggestion : let = tané.
-atm =__1_ -
@) [eds Lys.
4 4z ==
( 0
\Jlogl
x
(5) f‘f&:’*‘_’"_"’dx =0 it m<—1 or m>1
0
=1Zr if n=—1 or m=1
=’§r it —1<m<1.

INTEGRAL CALCULUS.

.dz=£°<ainw£°r~d«)dx

[ART. 92.

e~**sin m:cda) dz
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() fo ) °‘::“’dx= = Suggestion : integrate by parts.
98. Differentiation or integration with respect to a quantity

which is independent of x. (v. Art. 89.)
(¢) We have £ oy L (Art. 82, Ex. 6.)

Differentiate both members with respect to a,

j:(—“e"“dx) =— al, or £Dxe—"dz= ;l_’.

Differentiate again,
e g 2]
j‘: e dr= o

Differentiating n times,

I e =dp ="} [1] (v. Art.86, Ex. 3.)

al+l.

(&) Wo have f.,e_ .,.dx=% ﬁ: (Art. 92, Ex. 8.)
0 a

Differentiating n times with respect to a,
® o aat g 1.8.5...(2n—1) \/;
j; ™e 'dr= grrig— \g" 2]
(v. Art. 86, Ex. 2.)
(¢) We have J‘ e =dz =%. (Art. 82, Ex. 6.)
[}

Multiply by dc, and integrate from a to b,

f(fr%)@= 2

© ,-ex __ ,—bz
Hencel _e_—edx =10g%. [3]
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1 1
(@ jo' o=

Multiply by da, and integrate from b to a,

L (frwa)o= 255

gt — 2 a+l)
d =1 . 4
Hence Togz 27 og<b+ ] [4]
ExaMPLES.
dx w1 .
(1) From J;.w’+a—§ﬁ obtain
f” dz__ _x135..(2n—1) 1
o (*4a)"! 2 2.4.6..2n N

(2) From f ‘dz=—1_ obtain
(] n+41

‘o (log 2y~ dz = (—1)» — ™!
j; (logz)*dz = (—1) rEy=y
(8) From ~f.!'e“‘comn:d:.d:c:= _: obtain

a® 4+ m?

e — e b 4 m
———— cosmz.dz = 4log .
f z ® 3 (a’+ m?

(4) From f‘e‘“ sinmz.dz = 2_+m_ obtain
(] a

m2

® ,-az —bx
f e—_e—sinm.da:=tan“k—tan“ a.
) z m

8|

94. The method illustrated in Art. 93 can be applied to
much more complicated forms.

(a) f e ? 5, da. (v. Art. 86, Ex. 2.)
()
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L a2
Let u= f e Bdz;
0
then d__u=__2fmﬂ.{:_e~n—:—:‘
da o x
Substitute z2= g,
® % ° _a®
and ‘_11‘=_2f e"'“-’dz=—2fe"»'dz=—2u.
da ( ()
Hence du_ . 2da.
u
Integrating,
logu=—2a+4C,
and u=_Ce %,
When a=0, w= f e?dz=4Va. (Art.92(b)[2).
0
Therefore Ci=4Vn,
o a3 ~2a
and u =f e_”‘ Ady= ¢ 2\/‘;- [1]
0
®) f e-=?cosbz.dz. (v.Art. 86, Ex. 2.)
0
Let u =£ e~ cos bx.dzx,
then du_ _ f Dxe"‘”' sinbz.dz.
db (}

Integrating by parts,

j; e 7 ginbz.dx = 2—%,1: e cosbx.dr = %u.

du b
Therefore b T
du b
or —=——0aDb.
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Integrating, we have
b!
logu =— E‘i +C,
or u=C,e 4,

When =0, u=j; e“""dx=32&- (Art. 92, Ex. 3.)
z2a

-
Hence u= f e cosba.do = VEe 5=, [2]
o 2a
ExAMPLES.
(1) f “* ginma dr = tan-1".
a
cosmzT T
(2) f T+ Tag @ =3¢
Suggestion : I-{-—I—z’ =2 ) ae-*U+M da.

95. Introduction of imaginary constants.

j:cos (=*) d=. (v. Art. 86 (¢).)
We have f e gy — zl VT, (Art. 92, Ex.3.)
(] 2a
Let @d=cVI=¢ (cosg ++/—Tsin ;:)
x —_ . V2
Then a=c cosi+\/—lsm4 =" (14 V=1),
(Art. 25.)
1 1 1
and — = a1—-+v-1).

20 oVE(1+V=1) 2cV2
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-ty —1 =lJ‘£’ . ——=1).
Hence fe dx 2o \2 (1—-v-=1)
But e ??V=1 = cog (c*z*) — V—1sin (%),
([5] Art.31.)
Therefore

j:"cos(c’z’)dz—‘\/:fﬁ‘sin (éx*)dx:%\g (1—v=0),

and
E i
= == 1
j:eos(c’a:’)dx [ sin (' do =2 [1]
(Art. 17.)
Let c=1,
" i =3[
and fcos(z*)dz_£ sin () do = 44T r2]
If we substitute y = 2* in [2], we get
cosy smy .
oy 8

Gamma Functions.

96. It was shown in Art. 84 that ‘[ l(1og i)“da: is finite and
determinate for all values of n greater than —1, and infinite
when n is equal to or less than —1. The substitution of
y=log% reducesmthis integral to jo' ‘y"e"dy, or, what is the
same thing, toj: xz*e *dx; and in Art. 86, Ex. 8, the student
has been required to show that this integral is finite and deter-

minate for all values of n greater than —1.
fx“e"dx =—z"¢e*4n | 2*le*dz,

by integration by parts.
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If n is greater than zero,
ze*=0 when =0,

and z*e~* is indeterminate when = o. Its true value when
« = o, obtained by the method of I. Art. 141, is, however, zero.

Therefore f e *dr = nf x> le=dx [1]
(J 0

for all positive values of =n.

If n is an integer, a repeated use of [1] gives

f x"e"’dm:n!f e*dz;
0 (]

but fe"da: =1,
o

and we have j: 2 erdz =n! [2]
provided that n 1s a positive whole number.

If n is not a positive integer, but is greater than —1,
j:w‘e"da: is a finite and determinate function of n, and its
value can be computed to any required degree of accuracy by
methods which we have not space to consider here.

I ::""‘e“'da: is generally represented by I'(n), and has been
very carefully studied under the name of the Gamma Function.

If = is a positive integer, we have from [2]

Tr+1l)=nl (3]
From [8], T'(2) =1. - [4]
Since rQ) =j0ma:"e"d.v =jo“e"da:,
' r'(1) =1. [5]
We have always from 1]

T'(n+41)=nl(n), [6]

if n is greater than zero.
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Since f a*e~*dz is infinite when n is equal to or less than
0

—1, it follows from the definition of T'(n) that I'(n)= o if
n is equal to or less than zero. It has, however, been found
convenient to adopt formula [6] as the definition of I'(n) when
n is equal to or less than zero, and to restrict the original defi-
nition to positive values of n. The result easily deduced is
that T'(n) is infinite when n is equal to zero or to a negative
Integer, but is finite and determinate for all other values of n.

97. We may regard the formula
L'(n+1)=nI(n)

as a sort of reduction formula; and since each time we apply
it we can raise or lower the value of n by unity, we can obtain
any required Gamma Function by the aid of a table containing
the values of I'(n) corresponding to the values of n between
any two arbitrarily chosen consecutive whole numbers.

Such tables have been computed, and we give one here con-
taining the common logarithms of the values of I'(n) from
n=1 to n=2. The table is carried out to four decimal
places, and each logarithm is printed with the characteristic 9,
which, of course, is ten units too large, the true characteristic
being —1.

10 + log T'(n).

H
o
-
®
)
»

5 [}] 7 8!9
I

I
.. 9975 | 9951 | 9928 | 9905 | 9883 | 9862 | 9841 | 9821 | 9802
9.9783 | 9765 | 9748 | 9731 | 9715 | 9699 | 9684 | 9669 | 9655 : 9642
9.9629 | 9617 | 9605 | 9594 | 9583 | 9573 | 9564 | 9554 | 9546 1 9538
9.9530 | 9523 | 9516 | 9510 | 9505 | 9500 | 9495 { 9491 | 9487 | 9483
9.9481 | 9478 | 9476 | 9475 | 9473 | 9473 | 9472 | 9473 | 9473 :9474

9.9475 | 9477 | 9479 | 9482 | 9485 | 9488 | 9492 | 9496 | 9501 | 9506

9.9511 | 9517 | 9523 | 9529 | 9536 | 9543 | 9550 | 9558 | 9566 ! 9575

9.9584 | 9593 | 9603 | 9613 | 9623 | 9633 | 9644 | 9656 | 9667 I9679

9.9691 | 9704 | 9717 | 9730 | 9743 | 9757 | 9771 | 9786 | 9800 | 9815

9.9831 | 9846 | 9862 ‘9878 9895 | 9912 :9929I 9946 | 9964 i9982
|

Lot o - -l ol o o
wEIBTT hwv~O




108 INTEGRAL CALCULUS. [ART. 97.

Such a table enables us to compute with Gamma Functions
as readily as with Trigonometric Functions, and consequently
the problem of obtaining the value of a definite integral is
practically solved if the integral in question can be expressed
in terms of Gamma Functions.

For example, let us consider

(a) j; "o da.

Let y=ax;
then faf‘e"‘dx:-—f yrerdy = _“fz"e"da;.
Hence f -a:‘e"'da: = M, (1]
o at!
provided that a is positive and n>—1.
®) J; ' x"(log i_)‘dz. (v. Art. 84, Ex. 4.)
Let y=—logz.

then f ! af"(log 1)"dz = f ) yre =gy,
(] x (]

Hence, by [1],

o=

if m>—1and n>—1.

(c) j:‘e"’ dz.

Let y=2a*;

then j;-e"’dz=ij:’%dy=§j:arie"dz.

Hence ‘fne“"dit =3I (%). (3]
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98. J; ‘221 (1 — z)*'dz = B(m, n) [1]

is an exceedingly important integral that can be expressed in
terms of Gamma Functions ; it is known as the Beta Function,
or the First Eulerian Integral, T' (n) being sometimes called the
Second Eulerian Integral.

In the Beta Function, m and n are positive, and B(m,n) is

always finite and determinate. (v. Art. 84, Ex. 5.)
1
In fz"“‘(l—x)"‘da: let y=1—z,
0
and we get

1 1
f (11— x)""dw=f (1 —y)~ay,
0 0

or B(m,n) = B(n,m). [2]
1
-1 —_ n-1 —_ y
In jo‘af (1—2)*'ds let x_1+y,
and we get
f ‘21 (1 — 2yl = f CyTldy f AT ™
o o (14y)~* o (14 )™+
@ (E'"l
Hence j‘: Ao dz = B(m,n). [3]
We have seen in [1] Art. 97 (a) that
e T'(n+1)
ﬁ e “dx =__(—l-;ﬁ—.
Hence T'(m) =fa"x‘“e""dx,
(1]

I\(m) al—le—u =f au+u—l z;ll—] e—a(l-{»—:) dz,
0

T (m)faa"“‘ e *da =fwa7"‘1(fnaﬂ+u—! e—o(+z) da) dz,
o o o

P(m)I‘(n):ﬁazv“"(El(z—:;;%dx
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P(m)T(n) z=!
Therefore Tmtn) j R dz; [4]
or by [8],
B(m, n) =j;x‘ '(1—-:c)""dz=%:l_):r._%¢)_). [5]
If n=1—m, then since I'(1)=1,
1 Z'_l o
omdz=£ l+xdz I'(m) T(1 — m). [6]

Formula [6] leads to an interesting confirmation of Art.
92 (b).
Let m =4, and we have from [6]

s [ dz
rOr=f e sy
Substitute y= \/i,
and we have j; m 2j; l+y'—1'
Hence r()= V7; [7]

and since by Art. 97 (c)
[Tema  =3rp,

j:’e“’dx = §+/m.

99. By the aid of formulas [4], [5], and [7] of Art. 98
a number of important integrals can be obtained.
For example, let us consider

j isin"x.dx, where n is greater than — 1.
0
Let y =sinz,

b 1
and we have f’ sin*z.dx =f " (1 —y*)~tdy.
0 0
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Let, now, 2=y,

and

[ra-miag=if 70 -sta
=§£lw'%l—l (1— a;)“’da:_=1}B<n ‘;' 1 %)

T

But

)r(a)
by [5] Art. 98.
EEDE

L URR

2
3

'°+

. —
\_/
<A@t
/-\w+
P

iz
S
+
[
N—”

by [7] Art. 98.

= r(’—‘+1" [1]

If n is a whole number, this will reduce to the result given
in Art. 87, Ex. 5.

ExAMPLES.
(Y 2z Vi T(n+$)
M j‘:m T2 Te+1)

rvrnan L))
(2) f sin*z cos™x.dx =
0

2P<m +n+1) ‘

2
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_rf!
n

l‘(p+1)r(”‘+‘
3

. +1)
— » = -
) jr #(1=ar) dz nr(p+l+m+l)
n

[ART. 99.
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CHAPTER IX.
LENGTHS OF CURVES,

100. If we use rectangular codrdinates, we have seen (I. Art.

27) that d
tanr = E—Z, [1]
and (I. Arts. 52 and 181) that
ds® = dz* + dy?. [2]
From these we get sinr = %, [3]
CO8T = %7 [4]

by the aid of a little elementary Trigonometry.

These formulas are of great importance in dealing with all
properties of curves that concern in any way the lengths of arcs.

‘We have already considered the use of [2] in the first volume
of the Calculus, and we have worked several examples by its
aid in rectification of curves. Before going on to more of the
same sort we shall find it worth while to obtain the equations of
two very interesting transcendental curves, the catenary and the
tractriz.

The Catenary.

101. The common catenary is the curve in which a uniform
heavy flexible string hangs when its ends are supported.

As the string is flexible, the only force exerted by one portion
of the string on an adjacent portion is a pull along the string,
which we shall call the tension of the string, and shall represent
by T. T of course has different values at different points of the
string, and is some function of the codrdinates of the point in
question.
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The tension at any point has to support the weight of the por-
tion of the string below the point, and a certain amount of side
pull, due to the fact that the string would hang vertically were
it not that its ends are forcibly held apart.

Let the origin be taken at the lowest point of the curve, and

suppose the string fastened

Y at that point.

Let s be the arc OP,

r P being any point of the

string. As the string isuni-

P form, the weight of OP is

proportional to its length;

X we shall call this weight ms.

This weight acts verti-

cally downward, and must be balanced by the vertical effect of T,
which, by I. Art. 112, is T'sinr.

Hence T'sint = ms. - (1)

As there is no external horizontal force acting, the horizontal

effect of the tension at one end of any portion of the string must
be the same as the horizontal effect at the other end. In other

words, Tcosr=c (2)
where ¢ is a constant. Dividing (1) by (2) we get

~T

0

c
8= —tanr,
m

or s=atanr, (3)

where a is some constant. From this we want to get an equa-
tion in terms of z and y.

tanr=\/sec’r—l=q%—l;

ds*
=at(Z 1),
hence #=a ( e )
or atds® = (a® + &*)do?,
and ads dz. Integrate both members.

@i
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alog(s+Va'+8)=2+40C;

when =0, s=0,

hence C=aloga,

and log(s +Va'+ &) = ; + loga,

s+Valfy s =ae;,
Vai4 s =ae:—s,

= H
at=ale*a — 2qess,

s=g-(e=—e'5)= atanr by (8).
Hence a‘-li’=‘_‘(ez—— e 5),

[« 2
and . y=Z(c+e9)+C

If we change our axes, taking the origin at a point a units
below the lowest point of the curve, y =« when =0, and
therefore C'= 0, and we get, as the equation of the catenary,

=S +ed), *)

ExAMPLE.

Find the curve in which the cables of a suspension-bridge
must hang. Ans. A parabola.

The Tractriz.

102. It wwo particles are attached to a string, and rest on a
rough horizontal plane, and one, starting with the string stretched,
moves in a straight line at right angles with the initial position
of the string, dragging the other particle after it, the path of the
second particle is called the tractriz.

Take as the axis of X the path of the first particle, and as
the axis of Y the initial position of the string, and let « be
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the length of the string. From the nature of the curve the
string is always a tangent, and we shall have for any point

y .
a=—sln'r, [l]

for 7 lying in the fourth quadrant has a negative sine.
4

¥_ . W df
a—,’—‘-‘ﬂlnf—d—s,—mo
henoe y'(de* + dy’) = a’dy?,
y'da'=(a' — y*)dy’,
and d:c=:tL_yy’)—l-d—y

is the differential equation of the tractriz.
On the right-hand half of the curve r is in the fourth quadrant,
:-% or tanr is negative, and we shall write the equation

(a® — y*)tdy
T . [2]

If we allow the radical to be ambiguous in sign we shall get
also the curve that would be described if the first particle went
to the left instead of to the right. The tractrix curve, generally
considered, includes these two portions.

Integrating both members of [2], and determining the arbi-
trary constant, we get

de =—

z=—vVa'—y +alog

s+ VI—§
B *

as the cquation of the tractriz.
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ExAMPLES.

(1) Show by Art. 102 (1) that in the tractrix s—alogg

if s is measured from the starting-point.
(2) Find the evolute of the tractrix. (I. Art. 938.)

Rectification of Curves.

103. In ﬁn'ding the length of an arc of a given curve we
can regard it as the limit of the sum of the differentials of the
arc, and express it by a definite integral.

‘We shall have s= (Vd2Z + dy.

Z=2 2o

Of course in using this formula we must express Vda® + dy*
in terms of z only, or of y only, or of some single variable on
which z and y depend, before we can integrate.

For example ; let us find the length of an arc of the circle

2+ =adl
2z.dx + 2y.dy =0,

da:
~ y
I o YR o T S
da? 4 dy* = " dx’_y, =g
s=af:' d =a<sin i—sm“ﬂ).
% Vo — 2 « a
The length of a quadrant =a dx ="—a;
\/u - 2

.*. the length of a circumference = 2na.
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Length of Arc of Cycloid.
104. For the cycloid we have
r=af —asinf
y=a —acosa}.
dz = a(1 — cos§)dd = yd6,

(L. Art. 99.)

0 = versY ,
a

dy  dy
\/2_2_3[ V2ay—¢*
a a

1
a

dr=—Y%
V2ay —y*

2aydy’ _ 2ady’
dg: = ' =
da* + dy’ 2ay—y* 20—y’

ds=Z%a.— %
2a—y

sz 22 f%_f 2V2a(NZa—yo—VZa—y,).

9

If the arc is measured from the cusp, y, =0,
s=4a—2v2aV2a—y,. 1]
If the arc is measured to the highest point, y, = 2a,

s=4a.
The whole arch = 8a.

ExAMPLE.
Taking the origin at the vertex, and taking the direction down-
ward as the positive direction for y, the equations become

x=af +asin9} _ (I. Art.100.)
y= a—acosé

Show that s =2+/2ay when the arc is measured from the
summit of the curve.
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105. We can rectify the cycloid without eliminating 6.

z=af —asinf
y= a—acosd

dx=a(1 — cos@)ds,

dy = asin.dd,
dz2* 4+ dy* = 2a*df*(1 — cosd),
. 0‘
and s=a\/2f(l—0080)§d0,

s—a\/2f [2sm’9] df = 4afsm0d2_4a<cosa°—cos%‘)-

If =0 and 6, =2, we get 3= 8a as the whole curve.

106. Let us find the length of an arch of the epicycloid.

z=(a+b)cosd —b cosmd
J(L Art.109[1].)
= (a+ b) sin6 — b sin “—‘l';bo

dz=[—(a +b) sin 6+ (a 4 b) sin &2

J
+bj—]de

ds’=(a+b)’d0’[2—2( a+b0cos€+sln beSinO)]

dy=[ (a+b) c0s8 — (a +b) cos®

=2(a +b)’d0’(l - coszo).
s=(a+ b)\/2fo'(l— cos‘—l-o)icw,

M[ 8—00 cost ] [1]

To get a complete arch we must let 6,= 0 and 0,=ﬂ’ .
a

Hence, for a whole arch,
__8b(a+1D)
= Ta
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ExAMPLES.

(1) Find the length of an arch of a hypocycloid.
8b(a—10)
Ans. §= —————
a
(2) Find the length of an arch of the curve z!+4 yt=al,
and show that it agrees with tle result of Ex. 1.
(v. I. Art. 109, Ex. 2.)

107. Let us attempt to find the length of an arc of the ellipse

2 oy
atp=1
2zdx  2ydy
We have = + = =0
Vx
dy=— —_dz,
2=V
A =0T+ g0 @ gp = C—€%
a‘y? o« — o a -z
where e is the eccentricity of the ellipse.
z [Ca — e2; )
= —_— | dx. 1
Hence 8 ., [ a’—x:'] [1]
The length of the elliptic quadrant is
a a? —_— ef )
8'=£ [a’—z’ dzx. [2]

These integrals cannot be obtained directly, but

227 -]

al—2
can be expanded by the Binomial Theorem, and the terms of
the result can be integrated separately, and we shall have the
required length expressed by a series.
A more convenient way of dealing with the problem is to use

2
an auxiliary angle. Instead ‘ot :_: +:'b/_’— 1 we can use the pair
of equations

::Z:(‘)’;i} , (L. Art. 150),
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dz=a cos¢.d¢,
dy = — b sin ¢.d¢,
ds*= (a?cos’¢ + b*sin*¢p)d¢? =[a? — (a® — b?)sin*¢p]d¢*
= a’(l - —~ L sur¢> d¢® = a?(1— e*sin’¢)d¢?,
a
where e is the eccentricity of the ellipse.

s=a “(l—e’ain’cﬁ)*dcﬁ [3]
o

= j". “I1— pesin'g — - Jetsin'g —§ - }- Jesin'ss -] dg.

For the arc of a quadrant we have

s,=a i[l —sintp]tdg. [4]

ExAMPLES.

(1) Obtain s, as a series from [2], and also from [4], and
compare the results with Art. 91, Ex. 5.

(2) Show that the length of an arc of the hyberbola is
s=1b f ¢’[1+ @€ sinh? ¢]"d¢.

Polar Formulce.
108. If we use polar cordinates we have

ds = Vdrf +7*d¢?, (I. Art. 207, Ex. 2.)
tane =99, (L. Art. 207.)

ar’
From these we get, by Trigonometry,
siuc:m, cos:=(£-
ds ds
109. Let us find the equation of the curve which crosses all

its radii vectores at the same angle. Ilere

tane=a, a constant, rd¢ =u, adr =d¢,
dr T
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¢, ¢
r=e °*=e" e,

alogr=¢+0C,
¢
(¢))

r = be".

4
L]

where b is some constant depending upon the position of the origin.
This curve is known as the Logarithmic or Equiangular Spiral.

110. To rectify the Logarithmic Spiral. We have, from
109 (1), ¢

u

_-.-.logg;

dr
d¢ = a7‘

rdp= adr,
ds* =dr’ + *d¢* = (1 + a®)dr®;

o= (((1 +a)hdr= (1 + at)b(r, — o).

ExAMPLES.
(1) Find the length of an arc of the parabola from its polar

equation
r=—"__
1+4cos¢

(2) Find the length of an arc of the Spiral of Archimedes
r=ad.

111. To rectify the Cardioide. We have
r=2a(l—cos¢), (I. Art. 109, Ex. 1).

dr=2asin ¢.d¢,
ds’ = 4a’sin’¢.de® + 4 a*(1 — cos ¢)*d¢?

=8a*d*(1— cos ),
8=2./2.a ?'1 -—cos¢)id¢=8a[cos:ﬁ—cos¢—"]
A 2 2

= 16a for the whole perimeter.
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Involutes.

112. If we can express the length of the arc of a given curve,
measured from a fixed point, in terms of the codrdinates of its
variable extremity, we can find the equation of the involute of
the curve.

We have found the equations of the evolute of y = fx in the
form

!
z=2 ”“’”}, (L Art. 91).

Yy =y—psinv
We have proved that tany=tanr', (I. Art. 95),
U
and that 3_; =1, (L. Art. 96) ;
!
sinr' = g—y—,
* 4 (Art. 100).
cost' = de
dsl

Since tany = tanr', v=17' or v=180°417'.

As normal and radius of curvature have opposite directions,
we shall consider v = 180° + 7'.

Then siny=—sinr' and cosv=—cosr'.
. {
Hence z’=x+p%, 1)
d !
y=y+pl 2
Since dp =ds',
p=8'+l (3)

where [ is an arbitrary constant. Since z and y are the codrdinates
of any point of the involute, it is only necessary to eliminate «'.
y',and p by combining equations (1), (2), and (3) with the equa-
tion of the evolute.

As we are supposed to start with the equation of the evolute
and work towards the equation of the involute, it will be more
natural to accent the letters belonging to the latter curve instead
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of those going with the former; and our equations may be

written
dxz dy
— g ot 3. =9+ Y, '— g4 1. 1

z=a'+p s y=y+p p=8+ (4)

Since p'=1 when 8=0, it follows that ! is the free portion
of the string with which we start. (I. Art. 97.) By varying !
we may get different involutes of the same curve.

To test our method, let us find the involute of the curve

9 8 n
1r——27”—t (x — m)’, (5)

for which I=m. We must first find s.

8
2 =" _(2—m)idx
Yy = 5 (z — m)*dz,

—m)?
dy=-i—$£—y—7ﬁ—dz,

9m
det =22t M g,a

3m ’

lf 1
8= Qx4+ m)lde=——(2z+m)t—m,

V3 mm 3\/3m( )
p=8+m= 1_(2.::+m)i,

3m
x=x,+2.v+~m’
y=y'+ :i (2x+m)(a:—m)”
27m Y
z,____z—:;m’
2

'—_—-i(x-m)’:._ﬁ'_,

9y

r=32'4+m,

Substituting in (5) the values of z and y just obtained, we have
y'i=2mx'

as the equations of the required involute.
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ExAMPLE.

Find an involute of ay*=z".

113. An involute of the cycloid is easily found. Take equa-

tions 1. Art. 100 (C).
z= af+asinf
y=—a+acosf
Let p'=s,
dz = a(1+ cos6)dd ='2acos’gd0,
dy=— a sin.dd =—2a singcosgdo,
ds’=2a'd0’(l+c080)=4a’d0’eos’g,
o . 0
8=2a ocos§¢w =4asm§v
' 0 0 5
=2 +4asm§cos§=a: + 2« siné,
y=y’—4asin’% =y'—2a(1— cosh),

z’=¢10—asin0}

Y= a—acosf

a cycloid with its cusp at the summit of the given cycloid.

EXAMPLE.

From the equations of a circle
r=cos¢
y=asin¢
obtain the equations of the involute of the circle. Let I=0.

Ans. x'=a(cos¢ + ¢ sin ¢) }
¥=ua(sinp—pcosg) )
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Intrinsic Equation of a Curve.

114. An equation connecting the length of the arc, measured
from a fixed point of any curve to a variable point, with the
angle between the tangent at the fixed point and the tangent at
the variable point, is the intrinsic equation of the curve. If the
fixed point is the origin and the fixed tangent the axis of X, the
variables in the intrinsic equation are s and r.

We have already such an equation for the catenary

s=atanr, Art. 101 (8), (1]
the origin being the lowest point of the curve.
The intrinsic equation of a circle is obviously
s=ar, [2]
whatever origin we may take.

The intrinsic equation of the tractrix is easily obtained. We
have

y=—asinr, Art. 102 (1),
and s=a logs; Art. 102, Ex. 1.
hence 8 =alog(— cscr)

where 7 is measured from the axis of X, and s is measured from
the point where the curve crosses the axis of Y. As the curve is

tangent to the axis of Y, we must replace r by r — 90°, and we
get

s=alogsecr (3]

as the intrinsic equation of the tractrix.

EXAMPLE.

Show that the intrinsic equation of an inverted cycloid. when
the vertex is origin, is
s=4asinr; (1)

when the cusp is origin. is
s=+4a(1—cosr). 2)
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115. To find the intrinsic equation of the epicycloid we can
use the results obtained in Art. 106.
dx=(a+b)(sm‘lib‘i’ —sm0>d0—2(a+b)cosa+2b08 2.6.d6,

“+2b08m 0 dé,

dy_.(a+b)(eoso eosa+b )do 2(a+b)sin
by the formulas of Trigonometry
sin a — sin B = 2084 (a + ) sin§(a — ),
008 B cosa = 2sin 4 (a + B) sin(a — B) ;

dy a+2b
= — = tan
tanT = o “2p

=a+2b
2b

_4b ot ”>(1 - cos%)ﬂ)byArt.lOG[l];

hence 6;

therefore 8=4ba+b (1_003 a ,) [1]

a a+2b

18 the intrinsic equation of the epicycloid, with the cusp as origin.
If we take the origin at a vertex instead of at a cusp

8___4b(a +b)+8,,
a

__=1r(a+2b)+1_,,
2a

4Bty @

h
ence 8 P Slua T Y
or 8=4b(aa+ b) sina _:2b,r [2]

is the intrinsic equation of an epicycloid referred to a vertex.
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ExaxpLE.

Obtain the intrinsic equation of the hypocycloid in the forms
8= M (] — CO8 a 1—), (1)

a a—2b

4b(a—>d) . a
= a sin —5 7. (2)

116. The intrinsic equation of the Logarithmic Spiral is found
without difflculty.

4
We have r = be?, (Art. 109),
and s=V1+4al(r,—n). (Art. 110).

If we measure the arc from the point where the spiral crosses
the initial line, 7, = b, and we have

a=b\/l_+a’(e§— 1).

In polar codrdinates » = ¢ + ¢, and in this case ¢ = tan-'a; if
we mensure our angle from the tangent at the beginning of the
arc we must subtract ¢ from the value just given, and we have

s=b(x/1'+“u*)(e5-1);

or, more briefly, s=~k(c"—1), k and ¢ being constants.

117. If we wish to get the intrinsic equation of a curve directly
from the equation in rectangular coérdinates, the following method
will serve:

Let the axis of X be tangent to the curve at the point we take
as origin.

dy
== 1
tanr ax (1)

and as the equation of the curve enables us to express y in terms
of 2, (1) will give us z in terms of r, say x = Fr;
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then dz = F'r.dr, divide by ds;

‘;’; I""rd—:’ but %:cosr;

hence ds = secrF'r.dr. 2

Integrating both members we shall have the required intrinsic
equation.

For example, let us take 2 = 2my, which is tangent to the
axis of X at the origin.

2zdr = 2mdy,

(-i—y=tanr=x
dx

dz = m sec*r.dr,

g—j-—cou_msec’-rg;
ds = m sec®r.dr, (1)
a=mf dr _m sinr +1lo gtan +0,
cos’r 2| cos’r
8=0 when r=0; oo C=0;
m| sint T
=— -] I 2
8= 2[L -~ +logtan(4+2>] (2)
ExAMPLES.

(1) Devise a method when the curve is tangent to the axis
of Y, and apply it to y* = 2mz.

(2) Obtain the intriusic equation of 3* = —8 (:c —m)3,

(3) Obtain the intrinsic equation of the lnvolute of a circle.
(Art. 113, Ex.)
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118. The evolute or the involute of a curve is easily found
from its intrinsic equation.

m
If the curvature of the given curve decreases as we pass along

the curve, p increases, and
8=p—py (I. Art.96).

If the curvature increases, p decreases, and

8' =po— P.
Hence always =x(pp—po); Mm
p= dﬁ, (I. Arts. 86 and 90).
n

‘We see from the figure that ' =1r.

Hence s'=:l:[(ﬂ) —(i'?-) ]
dr )+ dr /.o

or, as we shall write it for brevity,

s== g—‘:i: (2]

119. The evolute of the tractriz 8 = a logsecr is

r
8= GMII =atanr, the catenary.
dr ° *

The evolute of the circle 8= ar is

r
8= a"k| =0, a point.
dr|,
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The evolute of the cycloid s =4a(1— cosr) is

T
s=4a‘ﬂl—ﬂzl =4asinr,
dr o

an equal cycloid, with its vertex at the origin.

ExampLEs.
(1) Prove that the evolute of the logarithmic spiral is an
equal logarithmic spiral.
(2) Find the evolute of a parabola.
(8) Find the evolute of the catenary.

120. The evolute of an epicycloid is a similar epicycloid, with
each vertex at a cusp of the given curve.
Take the equation

s=44—b a+b)(l—-cos
a

For the evolute,
d 1—cos~——a—r r
4b(a+D) a+2b
8=
a dr lo

_4b(a+d) . a
8= o120 sma+2b1' 1]

a
H—2b-f). Art-ll5 [l].

)

The form of [1] is that of an epicycloid referred to a vertex
as origin ; let us find a' and ', the radii of the fixed and rolling

circles.
4V(a' +b) . a .
g =20 — ) gin TrIe by Art. 115 [2] ;
’ (
hence, 4b@'+b)=4b(a+b)’
a' a+42b
a' a

a' 420 a+2b
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Solving these equations. we get

a'= a’
a+2b
b
b =—2_.
a+2b
a_e
Y b

and the radii of the fixed and rolling circles have the same ratio
in the evolute as in the original epicycloid : therefore the two
curves are similar.

ExAMPLE.

Show that the evolute of a hypocrcloid is a similar hypo-
cycloid.

121. We have seen that in inrolute and evolute r has the same
valoe : that is. 7 =1".

If ¥ and # refer to the evolute, and 2 and - to the inro we. we
bave found that

, dz”
8§ =— .
(’.’0
] d~8 .
or :=d—,—I. { being a constant.
T

the length of the radius of carvature at the origin.
(£ +0)d-"=ds.
s= [(s’-ﬁ-l)d:—'

is the equation of the inradute.
The involute of the catenary s=atanr is, when /=0,

s=a f tanr.dr =alogsecr.  the tractrix.
-
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The involute of the cycloid s =4 asinr when =0 is
T
8= 4a£sinr.dr =4a(l-cosr),

an equal cycloid referred to its cusp as origin.
The involute of a cycloid referred to its cusp s=4a(1 —cosr)
when!=0is

r
s=4af (1—cost)dr=4u(r +sin7),
o

a curve we have not studied.
The involute of a circle s = ar when [ =0 is

r
8= aﬂ‘r.df = ‘—li-

2

122. While any given curve has but one evolute, it has an
infinite number of involutes, since the equation of the involute

g =£le + l)dr

contains an arbitrary constant !; and the nature of the involute
will in general be different for different values of I.

If we form the involute of a given curve, taking a particular
value for /, and form the involute of this involute, taking the same
value of /, and so on indefinitely, the curves obtained will con-
tinually approach the logarithmic spiral.

Let s=/fr m
be the given curve.

o= f "+ frydr=1r + _]o' frdr
0
is the first involute ;

_ T T _ lfi T T
8-.!0‘ I+ +£ Srdr)dr=1r+ ) +£ ﬁ Sr.ds
is the second involute ;
s=b+ 24 +"—"+f frde® (2
2 3! n o
is the nth involute.
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By Maclaurin’s Theorem,
Sfr=fo+ ff'o+2l"-f"o +5f”'o + ceneen

But 8= 0 when r=0; hence fo =0, and

Tu - A]‘I"H'l A,T'+’ As‘l’""’ """ . 3
j: Sl = DI T e Tty T @)

a8 n increases indefinitely all the terms of (3) approach zero
(I. Art.133), and the limiting form of (2) is

o o

8=l'r-f-2—!--{-3—l 4 eeeee
r, 2,18
=l(l+i+2—!-+.3_!.+ ..... —l),
s=l(e"—1) by I. Art. 1838 [2],
which is a logarithmic spiral.

128. The equation of a curve in rectangular codrdinates is
readily obtained from the intrinsic equation.

Given s=fr,
we know that sinr= %.
and CO8ST = % 5
bence dx = cos rds = cosrf'r.dr,
dy == sin vds = sin t/"r.dr,
i
] -Ioouf'r.d:

y -fan /rdr
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The elimination of = between these equations will give us the
equation of the curve in terms of z and y. Let us apply this

method to the catenary.
8=atanr,
ds = a sec*r.dr,
T 1 +sinr
= cr.dr=al —
z aj:se(,-r r=alog 1 —sins’

.
y=a | secrtanr.dr=a(secr —1),
0

22 ] 4 gint
et =—
1 —sinr
& .
. . — es—e a
sinrtT = = y

the equation of the catenary referred to its lowest point as origin.

Curves in Space.

124. The length of the arc of a curve of double curvature is
the limit of the sum of the chords of smaller arcs into which the
given arc may be broken up, as the number of these smaller arcs
is indefinitely increased. Let (2,y,2), (z 4+ dx, y 4+ Ay, z 4 A2)
be the codrdinates of the extremities of any one of the small arcs
in question; dx,Ay,Az are infinitesimal; Vd2®+ Ay*+ Az’ is the
length of the chord of the arc. In dealing with the limit of the
sum of these chords, any one may be replaced by a quantity dif-
fering from it by infinitesimals of higher order than the first.
Vdz' + dy*+ dz? is such a value;

x =1

hence s= | Vda + dyf + d2*.
x =29
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Let us rectify the helix.
z=acosd

y=asing ;. (I. Art.214.)
z2=Kk0
= — asiné.df,
dy = a cosf.do,
dz = kd6,
ds* = (a® + k?)de,

8= (a*+ kD) j; "6 = NEF (6, — ).

ExXAMPLES.

2a =W
Ans. s=z+42+41

(1) Find the length of the curve (y = 5£’ 2z z',).

2) y=2\/a_z—z,z=z—§\,'§- Ans. s=z4+y—z+1
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CHAPTER X.

AREAS.

125. We have found and used a formula for the area bounded
by s given curve, the axis of X, and a pair of ordinates.

A =fyda:.

‘We can readily get this formula as a definite integral. The
area in the figure is the sum of the
slices into which it is divided by the
ordinates ; if Az, the base of each
slice, is indefinitely decreased, the
slice is infinitesimal. The area of
any slice differs from yAz by less
than AyAz, which is of the second

zy z Ax x
order if Az is the principal infini-
tesimal. We have then
limit ==
A= 7,0 3 ydz by I. Art. 161.
=2
Hence A= f “ydz. 1]

If the curve in question lies above the axis of X, and =, is
less than z,, each ordinate is positive, each Az is positive, each
term of the sum whose limit is required is positive, the sum is
positive, and the limit of the sum or the area sought is positive.
If, however, the curve lies below the axis of X, and z, is less
than x,, each ordinate is negative, each Az is positive, each
term of the sum is negative, the sum is negative, and the limit
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of the sum or the area sought is negative If, then, the curve
happens to cross the axis between &, and x,, formula [1] gives
us the difference between the portion of the area above the axis
of X and the portion below the axis of X, but throws no light
upon the magnitudes of the separate portions. Consequently,
in any actual geometrical problem it is usually necessary to find
the portion of the required area above the axis of X and the
portion below the axis of X separately; and for this purpose
it is essential to know at what points the curve crosses the axis.
Indeed, if the problem is in the least complicated, it is neces-
sary to begin by carefully tracing the given curve from its
equation, and then to keep its form and position in mind during
the whole process of solution.

ExAMPLES.

(1) Show that f I":::dy is the area bounded by a curve, the
o

axis of Y, and perpendiculars let fall from the ends of the
bounding arc upon the axis of Y.

(2) If the axes are inclined at the angle w, show that these
formulas become

. 1 ”
A=sinw | ydr=sine| =zdy.
) Yo

(8) Find the area bounded by the axis of X, the curve
2+ 4y =0, and the ordinate of the point corresponding to the
abscissa 4. Ans. 5}.

(4) Find the area bounded by the axis of X, the curve
y=2" and the ordinates corresponding to the abscisse —2
and 2. . Ans. 8.

(5) Find the area bounded by the axis of X, the axis of Y,
the curve y=cosz, and the ordinate corresponding to the
abecissa 8. Ans. 6.
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126. In polar codrdinates we can regard the area between two
radii vectores and the curve as the limit of the sum of sectors.

The area in question is the sum
of the smaller sectorial areas, any
one of which differs from 4*A¢ by
less than the difference between the
two circular sectors 4(r + Ar)!A¢
and 472A¢; that is, by less than

2
rArAd + LA_’2&‘P, which is of the

second order if A¢ is the principal infinitesimal.

_ limit [ 2=
Hence A= Ag= 0[&@ ?;%FA:;»] ,
”
A=} j; Pdg.

127. Let us find the area between the catenary, the axis of
X, the axis of Y, and any ordinate.

= a2z, =
y: | —£yh = Eﬁ(e- + e7a)dx,
4=5(-eb,
but ;-' (es - e':) =8, by Art. 101.

Hence A=as,

and the area in question is the length of the are multiplied by the
distance of the lowest point of the curve from the origin.

128. Let us find the area between the tractrix and the axis
of X.

We have dz = — %’l VE— . (Art. 102.)

A=fydz=—fdyx/a_’i?.
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The area in question is
A=—ﬁy'\)a’— =T'a’,

which is the area of the quadrant of a circle with a as radius.

EXAMPLE.

Give, by the aid of infinitesimals, a geometric proof of the
result just obtained for the tractrix.

129. In the last section we found the area between a curve
and its asymptote, and obtained a finite result. Of course this
means that, as our second hounding ordinate recedes from the
origin, the area in question, instead of increasing indefimtel:,
approaches a finite limit, which is the area obtained. Whether
the area between a curve and its asymptote is finite or infinite
will depend upon the nature of the curve.

Let us find the area between an hyperbola and its asymptote.

The equation of the hyperbola referred to its asymptotes as
axes is @+ 17

—
Let o be the angle between the asymptotes ; then

@ 2 o
A=sinw£ydx=gi'—b’sinm£ dz_ .

z

:cy:

Take the curve yYzr=4a’(2a —1z),
or y’=4a’.ga_'__x;
x

any value of z will give two values of y equal with opposite
signs ; therefore the axis of z is an axis of symmetry of the
carve.

When 2=2a, y=0; as z decreases, y increases; and when
2=0,y=o0. Ifzisncgative, or greater than 2a, y is imagi-
pary. The shape of the curve is something like that in the



Cmar. X.] AREAS, 141

figure, the axis of Y being an asymptote. The area between the
curve and the asymptote is then either

2a @
Y A=2jydx or A=2£wdy;
by the first formula,

A =4aj2.\’?u-dx=4a’w;
T

by the second,

n
A= 16a’f A _ 4ot
o y* + 4a?

2a r

EXAMPLES.

(1) Find the area between the curve ¥*(2® 4 «®) = a*® and its
asymptote y = a. Ans. A =2a’

(2) Find the area between ¥*(2u—x) =2’ and its asymptote
z=2a. Ans. A =3=nd.

(8) Find the area bounded by the curve y"’=:‘l;(iail and

its asymptote z =a. «—2x
Ans. A= 2a2(l + ;.')

180. If the codrdinates of the points of a curve are ex-
pressed in terms of an auxiliary variable, no new difliculty is

presented.
Take the case of the circle 2* + 3* = a?, which may be written
r=awcosep)
,

y=asing¢
dy = «cos ¢d.

2T
The whole area A =a? ‘f cos? pdep = mal.
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EXAMPLES.

i a:=aeos¢} . ]
(1) The whole area of an ellipse y=bsin ¢ is wab

(2) The area of an arch of the cycloid is 3 ra®.

(8) The area of an arch of the companion to the cycloid
z=al, y=a(l — cosl) is 2xa’.

181. If we wish to find the area between two curves, or the
area bounded by a closed curve, the altitude of our elementary
rectangle is the difference between the two values of y, which
correspond to a single value of @. If the area between two
curves is required, we must find the abscissas of their points of
intersection, and they will be our limits of integration; if the
whole area bounded by a closed curve is required, we must find
the values of z belonging to the points of contact of tangents
parallel to the axis of Y.

Let us find the whole area of the curve

a‘'y + V't = ? bt
or a'y? = b (a— %),

The curve is symmetrical with reference to the axis of X, and
passes through the origin. It consists of two loops whose areas
must be found separately. Let us find where the tangents are
parallel to the axis of Y.

=(%a: vVal -2,

t_lz__:k'a’— 242
dz  a* g — 3

r-; when tanr = o, that is, when r = + a.

= tanr.

d (eva—2 b (ava—ZFde=
4-2:.]3 @' —alds+2 5 zVa' — 2'.dr =4 ab.
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Again; find the whole area of (y —z)*=a'— 2
y=x+ Va'— 23,
A=f(y’—y")da:=f2\/a’—x’.dx. '
To find the limits of integration, we must see where r= 5"

dy_~Na—2 ¥z
iz a7

4= 2f.Va’—z’.dx= ral.

= o when z=*a.

ExAMPLES.

(1) Find the area of the loop of the curve y*= f’gl—'*':).

Ans. 2a’<l—’i .
(2) Find the area between the curves y’—4azx=0 and
2 —4day=0. Ans 16a®
(8) Find the whole area of the curve ot 4y = al. Ans. §ra’.
(4) Find the area of a loop of a’y* = z*(a®* —2%). Adns. %o
(5) Find the whole area of the curve
* 2y (a* + 2*) — 4ay(a® — &°) + (a* — 2*)* = 0.
Ans. d’r (4 —.‘5_21?)
132. We have seen that in polar codrdinates
b1
A=} f Pde.
b0
Let us try one or two examples.

(a) To find the whole area of a circle.
The polar equation is r=a.

A=1}£ha2d¢=1ra‘.
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(b) To find the area of the cardioide = 2a(1 — cos ¢).

A= ;112'(1 —cos¢)?dp = ‘2a"£271r— 2co8 ¢ + cos’de)de,
A=0datw.

(¢) To find the area between an arch of the epicycloid and the
circumference of the fixed circle.

z= (a4 b)cosd — b cos

a+4+b
b 0
y=(a+b)sin0—bsin(%-b0
We can get the area bounded by two radii vectores and the
arch in question, and subtract the area of the corresponding

sector of the fixed circle.
Changing to polar codrdinates,

& =1rcos ¢,
y=rsin¢.
We want } f 2ds.
tan¢= =
sec* dgb xly— ydz’
but, since z=rcosg, sech=_;
z
hence 73_(11’ = Mx,
! ?
and r*de = zdy— ydx;
dx=(a+b)<—sin0+sin“'::b o)do,

dy =(a +b)(0080 — cos? ':; bo)ao.

ady — ydw = (a +b) (a + 2b)<1 — cos$ o)do =rdg.
Our limits of integration are obviously 0 and 2bm,
a

-
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Si_f
Hence  A=4(a+DbXa+ 2b)£ . (1 - cosgo) a8,
A=%"(a+b)(a+2b),
is the area of the sector of the epicycloid. Subtract the area of

the circular sector zab, and we get
A= b’(3aa+ 2b)1r

as the area in question.

(d) To find the area of a loop of the curve ¥ = a*cos 2 ¢.

For any value of ¢ the values of r are equal with opposite
signs. Hence the origin is a centre.

When ¢ =0, r==%a; as ¢ increases, r decreases in length
till ¢=£, when r=0; as soon as ¢ > ;-r, r is imaginary. If ¢
decreases from 0, r decreases in length until ¢= —g, when r=0;
and when ¢<E, r is imaginary. To get the area of a loop,

then, we must integrate from ¢= —g to ¢ = E

A=3%| rdop= ia’ﬁ°‘032¢1d¢=‘—§-

-F = 4
ExAMPLES.

L

14 cos¢

(2) Find the area of a loop of the curve r*cos ¢ = «*sin3 ¢.
2 2
Ans. 3;" L log2.

(1) Find the area of a sector of the parabola r =

(8) Find the whole area of the curve r = a(cos2¢ + sin2¢).
Ans. =a.

(4) Find the area of a loop of the curve rcos¢ =acos2d¢.

Ans. (2 — ’Er) ad,

(5) Find the area between r =a(sec¢+tan¢) and its asymp-
tote rcos¢ = 2a. Ans. (g + 2) .
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133. When the equation of a curve is given in rectangular
codrdinates, we can often simplify the problem of finding its area
by transforming to polar coordinates.

For example, let us find the area of

(@ + ) =4a2 + 1%

Transform to polar coirdinates.

™ =47 (a’cos? p 4 b*sin’ o),
=4 (acos’¢ + U?sint¢),

A= 2£22’00s’¢ + bsin? ¢)d = 2w (a? + D).

ExAMPLES.

(1) Find the area of a loop of the curve (2* + §°)% = 4 a2y’

Ans 7l'a’

. 2 oy 1/2 2
(2) Find the whole area of the curve = + = ?"(&7‘ + %)

c?
Ans. = (a? .
ns ol (* 4+
(8) Find the area of a loop of the curve y* — 3 axy +2°=0.

3
Ans. a7
2

184. The area between a curve and its evolute can easily be
found from the intrinsic equation of the curve.

It is easily seen that the area -
bounded by the radii of curvature
at two points infinitely near, by
the curve and by the evolute, dif-
fers from 4 p*dr by an infinitesimal
of higher order. The area bounded
by two given radii vectores, the
curve and the evolute, is then

A= éj::‘p’ dr.
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p=—-

dr
T 2
Hence A=4) (%) dr.

For example, the area between a cycloid and its evolute is

“ifd(4asint)\?
A=§£ (—dr )dr

=8 a’J_‘c:)s’ dr.
‘e

Iﬁt To=— 0 an(‘ n= g M

A= 8(:1[37008’7(11 = 2=xd?.

EXAMPLES.

(1) Find the area between a circle and its evolute.
(2) Find the area between the circle and its involute.

Holditch;s Theorem.

185. If a line of fixed length move with its ends on any closed
curve which is always concave toward it, the area between the
curve and thelocus of a given
point of the moving line is
equal to the area of an el-
lipse, of which the scgments
into which the line is divided
by the given point are the
semi-axes.

Let the figure represent
the given curve, the locus
of P, and the envelope of the
moving line.

Let AP=a and PB=0b,
and let CB =p, C being the
point of contact of the moving line with its envelope. Let
AB=a+b=c.
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The: sres bvtween the first curve and the second is the area
Intwern the first curve and the envelope. minus the area between
the: necrmed curve and the envelope.

14t 6 Wx: the angle which
the moving line makes at
any instant with some fixed
direction.  Jat the figure
represent two near positions
of the moving line; Aé, the
angle between  these  posi-
tlons, being the principal in-
finitesimal,

Plimp, "B =p4 Ap.

The aven PRI 1P differs
from §p*d0 by an infinitesi-
mnl of higher order than the first.

$ 740 In the aren of PBMP, and differs from PP'NB by less
thun the rectanglo on 2°M and P’Q, which is of higher order than
the flest, by 1. Art. 153, But PP'NB differs from PP'B'B by
lonw than the rectangle on BN and NB', which is of higher order
than the flest, vinee N1, which is less than PP'+ Ap, is infini-
tonlmal and A6 I8 infinitesimal.

‘l“'h:\ aten between the first curve and the envelope is then
) ip’lw: oty sinece we ean take PPA'A just as well for our
N T

olomentary area, § l(v —p)de.

T 'Y A
Howwe + l,.nw= $ l(c —p)'dé;
(S A
whonoe ¢ l ol =2,
(S 39
w l pill = we, (1

The aren between the second curve and the envelope is
we

- b

v
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The area between the first curve and the second is then

A=4[pa0—4 [(p—b)as

=3 odf — b
= wbec — b’ﬂ' by (l) ’
=xb(a+b)—bm,
A = 7wabd, (2)
which is the area of an ellipse of which a and b are semi-axes.
Q.E.D.
ExampLEs.

(1) If a line of fixed length move with its extremities on two
lines at right angles with each other, the area of the locus of a
given point of the line is that of an ellipse on the segments of
the line as semi-axes.

(2) The result of (1) holds even when the fixed lines are not
perpendicular.

Areas by Double Integration.

136. If we take = and y as the codrdinates of any point P
within our area, # and y will be independent variables, and
we can find the area bounded by two

given curves, y=fr and y = Fr,

by a double integration. Suppose

the area in question divided into

] slices by lines drawn parallel to the

A‘I; ™ axis of Y, and these slices subdi-

vided into parallelograms by lines

M drawn parallel to the axis of X.
The area of any one of the small
parallelograms is AyAx. If we
keep z constant. and take the sum
of these rectangles from y=fr to y = Fr, we shall get a result
differing from the area of the corresponding slice by less than

Y
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2AxAy, which is infinitesimal of the second order if Az and Ay
are of the first order.

Jcd Pz
Hence fAz.dy = Axfdy
I &

is the area of the slice in question. If now we take the limit of
the sum of all these slices, choosing our initial and final values
of z, so that we shall include the whole area, we shall get the
area required.

Hence A= f"( o'l},)dx
0 \Jre

In writing a double integral, the parentheses are usually omit-
ted for the sake of conciseness, and this formula is given as

z, Fr
A=|" f dydux,
, Jre

the order in which the integrations are to be performed being the
same as if the parentheses were actually written.

If we begin by keeping y constant, and integrating with respect
to , we shall get the area of a slice formed by lines parallel to
the axis of X, and we shall have. to take the limit of the sum of
these slices varying y in such a way as to include the whole area
desired. In that case we should use the formula

%
= f (I.rlh/
LS f-

137. For example, let us find the area bounded by the para-
bolas y* =4 ax and 2* = 4 uy.
The parabolas intersect at the origin and at the point (4a, 4«).

&
T da (*~laz 4a ~Viay
m AT FE/ A= J: ‘ dydx, or A .._f d:cdy,
1
AT1T07Y
Yai
/@ sjar 2
'.;_._s.,ﬁ/ ‘ dy=Viuaxr — =,

_.'L— oJxr t da
4a
“"“ — X 16
l 1 = far—— Jdr=—a
‘L dydx = f (\/ ar 4(()(: 3 a

The second tormula gives the same result.
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EXAMPLES.

(1) Find the area of a rectangle by double integration ; of a
parallelogram ; of a triangle.

(2) Find the area between the parabola y* = ax and the circle

y=2az—a. - Ans. 2(71_21’)
4 3
(8) Find the whole area of the curve (y — mz — ¢)*=a® — 2.
Ans. wal.

188. If we use polar codrdinates we can still find our areas
by double integration.

Let r=/f¢ and r=F¢
be two curves. Divide the
area between them into

e slices by drawing radii
vectores; then subdivide
these slices by drawing
arcs of circles, with the
origin as centre.

Let P, with coérdinates
r and ¢, be any point
within the space whose

area is sought. The curvilinear rectangle at P has the base rA¢

. and the altitude Ar; its area differs from rA¢Ar by an infinitesi-

mal of higher order than rA¢Ar,

Fy
The area of any slice as aba'd' is f rA¢dr, ¢ and A¢ being
Fp Jo
constant, that is A¢frdr The whole area, the limit of the

sum of such slices is A= | f rdrdé. 1)

Or we may first sum our rectangles, keeping r unchanged,
and we get as the area of efe'f’

F-1¢ F-1
rAr | d¢, and A= f rdedr. (2)
f—l¢ T, cj l¢
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It must be kept in mind that r in (1) and (2) is the radius
vector of any point within the area sought, and not of a point
on the boundary.

For example, the area between two concentric circles, r=a
and r=2>, is

4 =f£1"2¢dr =£2“I;drd¢ = x(a®— ).

Again, let us find the area between two
tangent circles and a diameter through the

point of contact.
Let a and b be the two radii,
r=2acos¢ ) @
and r=2bcos¢ (2)
are the equations of the two circles.

F° ~2acosg T

=f rdrdg = 2(a’-—b’)foos’¢d¢ = T (a*—bY).

0 J/2bcosg 0 2

If we wish to reverse the order of our integrations we must

break our area into two parts by an arc described from the origin
as a centre, and with 2 as a radius; then we have

2p _cos— ‘la 2a cos-‘;—a

= f f rdedr + frdcfxlr

0 cos-'-; 0
— a¥ _e-1T e LT
_fr(cos %a cos 2b>c1r+ 2;;cos 2adr
=Z(a?—b%).

2@ -1

EXAMPLE.

Find the area between the axis of X and two coils of the
spiral r = a¢.
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CHAFTER XIL
AREAS OF SURFACES.

Surfaces of Revolution.

139. If a plane curve y=fx revolves about the axis of X, the
area of the surface generated is the limit of the sum of the areas
generated by the chords of the infinitesimal
arcs into which the whole arc may be broken
up. Each of these chords will generate the
surface of the frustum of a cone of revolution
if it revolves completely around the axis;
and the area of the surface of a frustum
of a cone of revolution is, by elementary
Geometry, one-half the sum of the circum-
ferences of the bases multiplied by the slant height. The frustum
generated by the chord in the figure will have an area differing
by infinitesimals of higher order from = (y 4+ y + Ay)As or from
27yds. The area generated by any given arc is then

41
S=2x , yds. (1]

If the arc revolves through an angle 6 instead of making a
complete revolution, the surface generated is

S= a‘l’:lyds. [2]

It must be noted that [1] and [2] will give a positive value
for S if the generating curve lies wholly above the axis of X at
the start, and a negative value for S if it lies wholly below the
axis of X at the start. If the curve happens to cross the axis
of X between the points whose ordinates are y, and y,, [1] and
[2] give not the area of the surface generated by the curve in
question, but the difference between the areas generated by the
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portion originally above the axis, and the portion originally
below the axis.
ExAMPLE.

Show that if the arc revolves about the axis of Y, 8 =2r zds.
Zo

140. To find the area of a cylinder of revolution.
Take the axis of the cylinder as the axis of X. Let a be the
altitude and b the radius of the base of the
cylinder. The equation of the revolving
line is
y=>;

dy =0,

ds = Vda* + dy = dx;

S=2x .yda:= 2wabd,

1]

or the product of the altitude by the circumference of the base.

Again, let us find the surface of a zone.
The equation of the generating circle is

2?4y =a’;

adx
,

ds=

S= 21rf lad:v: 20#(1‘1—%).

0

N

If %y=—a and 2,=a, S=4ar.

Hence the surface of a zone is the altitude of the zone multi-
plied by the circumference of a great circle, and the surface of
a sphere is equal to the areas of four great circles.

Again, take the surface generated by the revolution of a
cycloid about its base.

:c=a0—-a,sin0}

y=a—acosl

b

ds=adfN2(1 —cosf), by Art.105;
2m
S=27f @/2.(1 — cos§)1df = 54 wa’.
1)
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EXAMPLES.

(1) The area of the surface generated by the revolution of

the ellipse 22
’ ath=

. . ——  sin7le
about the axis of X is 21rab(\/1 —é 4 p H

about the axis of Y is 2xa? (l + lz—ezlog 1+ e),
2e

1—e
a—b
a!

(2) Find the area of the surface generated by the revolution
of the catenary about the axis of X; about the axis of Y.

(8) The whole surface generated by the revolution of the
tractrix about its asymptote is 4 wa®.

(4) The area generated by the revolution of a cycloid about
its vertical axis is 8wa®(r —$).

(5) The area gencrated by the revolution of a cycloid about
the tangent at its vertex is 32 wa’.

(6) The arca generated by the revolution of the curve
2t 4 yt=al about its axis is 12 xa?.

where =

141. If we know the area generated by the revolution of a
curve about any axis, we can get the area generated by the
revolution about any parallel axis by an easy transformation of
codrdinates.

Given the surface generated by the arc from s, to s, about
P . OX, to find the area generated by
/\ the same arc when it revolves
o x' about O'X".

Let S be the surface about OX,
and S' about O'X",

[ X We have

Y

8, 8,
S=2nyds, S'=2x|y'ds.
% %
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By Anal. Geom., r=2a,
y=%+y'"
Hence de=da', dy=dy', ds=ds,

8 8
and  S=27f (3o+y)ds=2myo(s,— %)+ 27 y'ds,
o %

=27Yo(8 — 8) + S
Therefore S'=8 —2my(8 — %). (1]

8, — 8 is the length of the revolving curve; 2y, is the cir-
cumference of a circle of which y, is the radius. Hence the new
area is equal to the old area minus the area of a cylinder whose
length is the length of the given arc and whose base is a circle
of which the distance between the two lines is radius.

In using this principle careful attention must Le paid to the
sign of ¥, and it must be noted that the original formula

8,

S§=2= y'ds'will always give a negative value for the area of
(N

the surface generated, if the revolving arc starts from below the

axis ; and hence, that the surface generated
by the revolution of any curve about an
axis of symmetry will come out zero.
As an example of the use of the princi-
ple, let us find the surface of a ring.
Let a be the distance of the centre of ———F(——X
the circle from the axis, and b the radius of
the circle. Since the area generated by the
revolution of the circle about a diameter is zero, the required
area is

27b.2 ra = 47°ab.

ExXAMPLE.

Find the area of the ring generated by the revolution of a
cycioid about any axis parallel to its base.

Ans. 8= 4ab,,<,, + l_fia?:;mb)
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142. If we use polar coirdinates,

L]
S=2x§yds
2
becomes S=27rf;'sin¢.ds.
8
where ds = VdF + P7dg.

For example ; let us find the area of the surface generated by
the revolution of the upper half of a cardioide about the hori-
zontal axis.

r=2a(l—cos¢);

dr =2asin ¢.d¢,

ds' = 84*(1—cos ¢)dg*,
S=2n= of V2a*(1— cos ¢)isin ¢.dgp.
8§ =188 rc’.

ExAMPLES.

(1) Find the surface of a sphere from the polar equation.

(2) Find the surface of a paraboloid of revolution from the
polar equation of the parabola

7'—'—m
1—cos¢’

Cylindricul Surfaces.

148. If a cylindrical surface is generated by a line which is
always parallel to the axis of Z, the area of the portion bounded
by two positions of the generating line, the plane of XY, and
any curve whose projection on the plane of XZ is given, is
easily found.

Let ABCD be the cylindrical area required.
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be the equation of 4B, the line of intersection of the surface
with the plane XY; and let

z=Fx 2

be the equation of C,D,, the projection of CD on the plane
of XZ. .

If z,y,2z are the coordinates of
any point P of CD, the required
area is evidently the limit of
the sum of rectangles, of which
PP'P'P" is any one. The area
of PPP'P" differs by an in-

x finitesimal of higher order than
ds from zds, and therefore the

required area S = f “eds.

x,z are the coérdinates of P, and

satisfy (2), and ds= Vd2? + dy*
where z,y are the codrdinates of
P and satisfy (1).

We have, then, 8= f eV + dy. [3]

29

For example, let AB be the quadrant of a circle, and let the
projection of the required area on the plane of XZ be the quad-
rant of an equal circle, so that the surface required is one-eighth
of the surface of a groin.

Here 2+ yl=d’, 4)
and 2+ 2P =a?; ()

ds = ViF Fdp ="do =92
¥ y Vi =22

and z2=vVal—a
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Therefore S =fu\/ F_#. 9% _(dr=a
o ‘\/a’ — ()

Again, let us find the area of the curved surface of the
portion of a cylinder of revolution included within a spherical
surface, whose centre lies on the surface of the cylinder, and
whose radius is equal to the diameter of the cylinder.

If the centre of the sphere is taken as the origin, and a
diametral plane of the cylinder as the plane of XZ, the surface
required is four times that indicated in the figure.

The equation of the cylinder is

o —az+ =0, (6)
and of the sphere

B4y +2—at=0. )

Subtract (6) from (7), and we get

Z’ + ax — a*=0 (8)
as the equation of a cylindrical surface /z
perpendicular to the plane XZ, and-
passing through all the points of intersection of (6) and (7).
(8) is, then, the equation of the projection on the plane of XZ

of the line of intersection of the given spherical surface and
the given cylindrical surface.

From (6), ds=d&+ dyi= -—yda: = a‘:’_z’

From (8), z=+d*—ax.
Hence S= | Vai—az- adz =a\/5 ‘ (i—_a:.dz
1) 9 Vaz—= 2fovxva_z
a\/— .dx a’;
o Vaz

and the whole area required,

48 =4add.
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ExaMpPLZS.

(1) Find the area cut from the cylindrical surface whose
base in the plane XY is a quadrant of the curve 2 4 y# = al by
the plane z=z. Ans. §a.

(2) Find the area of that portion of a cylindrical surface
whose base in the plane of XY is a quadrant of the ellipse

.:_:+ %:: 1, and whose projection on the plane of XZ is bounded

by the curve a*2?=bla*(a?—2*). Ans. S= ab(a’+ab+b)
3(a+0)

(8) Let the base of the cylindrical surface be a tractrix,
whose vertex lies at a distance a to the left of the origin, and
whose asymptote is the axis of Y, while its projection on the
plane of XZ is bounded by the parabola 2* = —2mz.

Ans. S =2aV2ma.

(4) Let the base of the cylindrical surface be the upper half
of a cycloid, having its vertex at the origin and its base parallel
to the axis of Y, and at a distance 2a from the origin, while
its projection on the plane of XZ is bounded by the parabola

2'=2ma. Ans. S =4avam.

Any Surface.

144. Let z, y, z be the codrdinates of any point P of the sur-
face, and z 4 Az, y + Ay, z+ Az the coérdinates of a second
point @ infinitely near the first. Draw planes through P and @
parallel to the planes of XY and YZ. These planes will inter-
cept a curved quadrilateral PQ on the surface ; its projection pq,
a rectangle, on the plane of XZ; and a parallelogram p'q’ not
shown in the figure, on the tangent plane at I, of which pg is
the projection. PQ will differ from »'¢' by an infinitesimal of
higher order, and therefore our required surface will be the limit
of the sum of the parallelograms of which p'¢’ is any one.
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If B is the angle the tangent plane at P makes with XZ,
p'q'cosB=pg or p'q'=pgsecf = AzAzsecfB, and o, our sur-
face required, is equal to
the double integral

a=ffsec/3dwdz

taken between limits so
chosen as to embrace the
whole surface.

The limit of the sum
of the parallelograms, of
which p'q’ is a type, will
be the required surface
if the limit of the sum of
the rectangles, of which
pq is a type, is the pro-
jection of the surface in
question on the plane of XZ; so that the values of = and 2

between whlch we integrate in o= f f secBdxdz are precisely
those we should use if we were finding the area of the projection
of o by the double integration f dzdz. (v. Art. 136.)

The equation of the tangent plane at P is

(x — 29) Dz, f+ (¥ — ¥,) Dy, f+ (2 — %) D, f =0, byl. Art. 217,
(%0s Y0r %) standing for the codrdinates of the point of contact,
and f(=,y,2) =0 being the equation of the surface.

The direction cosines of the perpendicular from the origin upon

the plane are D..f
cosa = £ )
V(DzS ) + Dy, fY + (Dz S )
cos Dy.f
‘/(D:of Y+ Dy SY + (DY
D..f
cosy =

‘\/(D-""c.f)2 + (D!/of)z+ (Dzof)

by Anal. Geom. of Three Dimensions.
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Hence, dropping the accents,

o= [ [YOLFDITFDD g, (1]
D,f

By considering the projections upon the other cosrdinate planes
we shall find

o= f\/(D,f)’+(D.f)’+(DJ)’dydz 2]

o= f f\l (D) + (D.f) "+ (Duf)’ gy, [3]

In each of the formulas the derivatives are partial derivatives.
Let us find the area of the portion of the surface of the sphere

2+ yr+2t=d
intercepted by the three coérdinate planes.
D=2z,
D,f=2y,
D,f=2z,
V(D.f) +(D,f) +(D.f) =

o'—ff ‘:;;(;z (1)

~ai—z3

or o-_.‘ff dadz ; (2)
or o [ (Canty. ®

For, in the second one, which agrees best with the figure, we
must take our limits so that the limit of the sum of the projec-
tions may be the quadrant in which the sphere is cut by the
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plane XZ; and the equation of this section is obtained by letting
y =0 in the equation of the sphere, and is

2+ 2 =dl,

whence 2=V -2
If we take as our limits in the integral f 2dz zero and Vi'— 2
we shall get the area whose projection isy a strip running from
the axis of X to the curve ; then, taking f f;-; (lz) dx from 0 to

a, we shall get the area whose projection is the sum of all these
strips, and that is our required surface.

y=Vé -2,

dzda:
7= a‘f J" Vi@ -2 =2 o

[=E—- sin-'_i_

\/a*—av:’—-z2 Vo

if we regard « as constant ;
N

L:E'
W a—r—z 2
e 2
c=a Idx=’r—a-,
o 2 2

the required area. Formulas (1) and (3) give the same result.

145. Suppose two cylinders of revolution drawn tangent to
each other, and perpendicular to the plane of a great circle of a
sphere, cach having the radius of the
great circle as a diameter ; required the
surface of the sphere not included by
the cylinders.

The surface required is eight times
the surface of which the shaded portion
of the figure is the projection.

If we take the plane of the great
circle as the plane of XY,
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is the equation of the cylinder, and
d+y+=a (€))

of the sphere.
We have (,_ff\/(Dgf)’+( f)’+(D'f)’dydx.

D, f

From (2) D,.f=2x, .
D,f=2y,
D, f=2z;

(D) + (D, f)' + (D, f) = 4a.

a . dydx
Hence o =ff; dydx = af m’

Our limits of integration for y are Vaz — 2* and Va® —2%; for

x are 0 and a.
S@-2 qydz
7= J: j‘\/a2 —

Yar-z3

Je-2 d z
Y _ gin™ y =T siu"\/ .
JNE—2 - «— 2t 2 a+t+z
var-z2 Yar—z

To find | sin~'+ }L.dx we must integrate by parts.
. a4z

— sin-!
Let u=sin \,a 7
and dv=dx;
V=2, _
du= —-l—\l(—'d:c H
2 (a4 :c) x
fsm" dx -1 \/a \/—
\ + z a + x
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Let w=+/z; 2wdw=dz
Vzdz widw __a
and otz Jarw = I\ et
Vz.dr _ W
a+ar:_2 w—+/atan va/)’
£ Jin-l\/ __’:__.dz
a x
=asm“\/§+atan"1 a’r+a’—:—a=‘ﬂ'_a,
o--—a(a?’r—-— +a> =al

80 = 8a’ is the whole surface in question.

146. Let us find the area of the curved surface of a right
cone whose base is the curve z¥ 4 yt = ail, and whose altitude
is c.

If we take the vertex of the cone as the origin of codrdinates,
and its axis as the axis of Z, the equation of its curved surface
is

1
ot 4 yi= (a_:) ) (l)
and the projection of the surface on the plane of XY is bounded
by the curve
zt 4yt =al. (2)

From (1) we get

VONFOFBIT |14 & @}
D,f a iyt

where z,y are the codrdinates of any point within the projec-
tion of the base of the cone.

Since the four faces of the cone are equal, the required
surface

b

(at-aift
=4 ffz'iy‘i\/a’ziyi+c‘(x3+yi)’ dydz.  (8)
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Let us substitute v*=2z and «w*=y, whence dzr=3v'dv
and dy = 3w’dw, and we have
ad (ale2d
ffvw Vaivuo* 4 (v + w') . dwdv;

or, since in a definite integral it makes no difference what letters
we use for the variables,

(ad -2}
o=38 f S EFFFEE YT - dyda. )

The 2 and y in (4), however, must not be confounded with the
z and y in (8).

The integral in (4) is precisely that which we should have to
find if we sought the area of a surface of such a nature that its
projection on the plane of XY was a quadrant of the circle
2 4 y* =al, and the secant of the angle made by the tangent
plane at any point (z,y,z) of the surface with the plane of XY
was zyVar?y + (2 + ¥°).

In the latter problem there is nothing to prevent our re-
placing z and y in 2y Va*a?y? + ¢ (2® + 4*)® by their values in
terms of r and ¢, the polar coérdinates of any point of the
projection #? 4 y*=al, and dividing this projection into polar
elements instead of rectangular elements, and then integrating
between the limits which we should use if we were finding the
area of the projection by the formula 4 = f f rd¢dr.

We have, then,

a——ff 'r’sm¢cos¢\/a’ﬂsm’¢cos’¢+c’r‘ rdrd¢,

or

36 (T (o, .
=Ef‘£r’sm4>cos¢\/a’sm‘*’d;cos’¢+c"’.drd¢,
0

o= 6a£’sin¢ cospVa? sin® cos?p + . de.
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Substitute % =sin’¢, and
a=3afl\/a’u(l —u)+c. du,
0

2c

o= %[2&: + (a* +4¢%) tan-1. 2

ExXAMPLES.

(1) Find the area included by the cylinders described in
Art. 145 by direct integration.

(2) A square hole is cut through a sphere, the axis of the
hole coinciding with a diameter of the sphere; find the area of
the surface removed.

(8) A cylinder is constructed on a single loop of the curve
r=a cosn¢, having its generating lines perpendicular to the
plane of this curve; determine the area of the portion of the
surface of the sphere z* 4 y* 4 2*=a?® which the cylinder inter-
cepts. Ans. 4at 1_:-_1)_

n \2

(4) Find the area of the portion of the surface of the cone

described in Art. 146 included by the cylinder 2* 4 y*= %
S
Ans. ﬁ’ 2va? 43¢ tan“(ig'*'—sc') —atan 2|

a c 2¢

(5) Find the area of the portion of the surface of the sphere
24y +22=2ay cut out by one nappe of the cone
AP+ B = y’. Ans. 4 xal

(1+4)(1 +B)

(6) Find the area of the portion of the surface of the sphere

2 + y* + 2 = 2ay lying within the paraboloid y =A4s®+4 B2'.
Ans. 270
VAB

(7) The centre of a regular hexagon moves along a diameter
of a given circle (radius = a), the plane of the hexagon being
perpendicular to this diameter, and its magnitude varying in
such a manner that one of its diagonals always coincides with
a chord of the circle; find the surface generated.

Ans. a’(27 +84/8).




168 INTEGRAL CALCULUS. [ART. 147.

CHAPTER XIIL
VOLUMES.
Single Integration.

147. If sections of a solid are made by parallel planes, and a
set of cylinders drawn, each having for its base one of the sec-
tions, and for its altitude the distance between two adjacent
cutting planes, the limit of the sum of the volumes of these
cylinders, as the distance between the sections is indefinitely
decreased, is the volume of the solid.

We shall take as established by Geometry the fact that the
volume of a cylinder or prism is the product of the area of its
base by its altitude.

It follows from what has just been said, that if, in a given
solid, all of a set of parallel sections are equal, the volume of
the solid is its base by its altitude, no matter how irregular its

form.
Let us find the volume of a pyramid having b

for the area of its base, and a for its altitude.

Divide the pyramid by planes parallel to the
base, and let z be the area of a section at the dis-
tance « from the vertex. "

We know from Geometry that g ==,
ﬂ Hence 2= % 2%
a

Let the distance between two adjacent sections be dz; then
the volume’ of the cylinder on z is

%x’dx,
a
and V, the required volume of the pyramld, is
b o ab
V== {2de=—.
a’j; =3
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Precisely the same reasoning applies to any cone, which will
therefore have for its volume one-third the product of its base
by its altitude.

ExaAMPLE.

Find the volume of the frustum of & pyramid or of a cone.

148. If a line move keeping always parallel to a given plane,
and touching a plane curve and a straight line parallel to the
plane of the curve, the surface generated is called a conoid.
Let us find the volume of a conoid when the director line and
curve are perpendicular to the given plane.

Divide the conoid into laminae by
planes parallel to the fixed plane.

Let Ay be the distance Dbetween
two adjacent sections, and let z be
the length of the line in which any
section cuts the base of the conoid ;
let a be the altitude and b the area
of the base of the figure. Any one of our elementary cylinders
will have for its volume 4 «axzAy, since the area of its triangular

base is §ax, and we have V' =4« | zdy, the limits of integra-
tion being so taken as to embrace the whole solid. fxdy be-

tween the limits in question is the area of the base of the co-

noid ; hence its volume,
V =4%abd.

EXAMPLES.

(1) Find the volume of a conoid when the director line and
curve are not perpendicular to the given plane.

(2) A woodman fells a tree 2 feet in diameter, cutting half-
way through from each side. The lower face of each cut is
horizontal, and the upper face makes an angle of 45° with the
horizontal. How much wood does he cut out?
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149. To find the volume of an ellipsoid.
A A
atuta=l

Take the cutting planes parallel to the plane of X¥Y. A sec-

tion at the distance z from the origin will have

2 ¥ 2_c—2

z =1-%2=-¢—"%

dTp='"a" 2

b

for its equation, and %\/c’ —2dand P Ve — 2* for its semi-axes ;
hence its area will be ’%?’(c*—z*).

Any of the elementary cylinders will have for its volume
"—;-b(c’—z’)Az, and we shall have for the whole solid

V= ’r%b Ec’ — 2% da.

-c

V = 4 rabe.
If a, b, and c are equal, the ellipsoid is a sphere, and
=3 wad.
ExAMPLES.

(1) Find the volume included between an hyperboloid of one
sheet

' 2

SHE-5=
and its asymptotic cone

E’ + 'L! — f =0

@ v e

Ans. It is equal to a cylinder of the same altitude as the
solid in question, and having for a base the section made by the
plane of XY

(2) Find the whole volume of the solid bounded by the surface

8 rabe
5

2 g A
Eﬂ+b2+¢_;4_l' Ans.
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(3) Find the volume cut from the surface
2.y
ctp=2®

by a plane parallel to the plane of (YZ) at a distance a from it.
Ans. ma*+/(be).

(4) The centre of a regular hexagon moves along a diameter
of a given circle (radius = a), the plane of the hexagon being
perpendicular to this diameter, and its magnitude varying in
such a manner that one of its diagonals always coincides with
a chord of the circle; find the volume generated.

Ans. 2./8.a%

(8) A circle (radius = a) moves with its centre on the cir-
cumference of an equal circle, and kecps parallel to a given
plane which is perpendicular to the plane of the given circle ;

find the volume of the solid it will generate. 24
ns. T(3 =+ 8).

Solids of Revolution. Single Integration.

150. If a solid is generated by the revolution of a plane curve
y = fz about the axis of z, sections made by planes perpendicu-
lar to the axis are circles. The area of any such circle is =y?,
the volume of the elementary cylinder is ry*Az, and

= ?/"’dx

is the volume of the solid generated.

For example ; let us find the volume of the solid generated by
the revolution of one branch of the tractrix about the axis of X.
Here we must integrate from =0 to z =o.

V= rj_;’ dz.

(@—y)
We have dz =~ —v dy (Art. 102 [2].)
in the case of the tractrix ;
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hence V=—m=n 3;:(;’ —yH)idy.
‘When 2=0, y=a, and when 2=, y=0.
0
Therefore V=—=)y(a®—y)idy= "si.
ExAMPLES.

(1) If the plane curve revolves about the axis of Y,

Ver| 2dy.

Y

(2) The volume of a sphere is § wa®.

(3) The volume of the solid formed by the revolution of a
cycloid about its base is 5#*a’.

(4) The curve y*(2a — x) = 2 revolves about its asymptote ;
show that the volume generated is 27*as.

(5) The curve x4 yi=atl revolves about the axis of X;
show that the volume generated is % wa’.

Solids of Revolution. Double Integration.

151. If we suppose the area of the revolving curve broken up
into infinitesimal rectangles as in Art. 137, the element AzAy
at any point P, whose coirdinates are = and y, will generate
a ring the volume of which will differ from 2=yAzAy by an
amount which will be an infinitesimal of higher order than the
second if we regard Az and Ay as of the first order. For
the ring in question is obviously greater than a prism having
the same cross-section AzAy, and having an altitude equal to the
inner circumference 27y of the ring, and is less than a prism
having AzAy for its base and 2= (y + Ay), the outer circumfer-
ence of the ring, for its altitude ; but these two prisms differ by
27Az(Ay)*, which is of the third order.
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Ax I 2 nydy, where the upper limit of integration is the ordi-

nate of the point of the curve immediately above P, and must be
expressed in terms of x by the aid of the equation of the revolv-
ing curve, will give us the elementary cylinder used in Art. 150.

The whole volume required will be the limit of the sum of
these cylinders ; that is,

V=h£"ﬂdydx. [1]

If the figure revolved is bounded by two curves, the required
volume can be found by the formula just obtained, if the limits
of integration are suitably chosen.

Let us consider the following example :

A paraboloid of revolution has its axis coincident with the
diameter of a sphere, and its vertex in the surface of the sphere ;
required the volume between the two surfaces.

Let y¥=2mzx (1)
be the parabola, and 2*+ 3 —2ax=0 (2)

be the circle, which form the paraboloid and the sphere by their
revolution. The abscissas of their points of intersection are 0
and 2(a —m).

We have V= 21rf f ydydzx,

and, in performing our first integration, our limits must be the
values of y obtained from equations (1) and (2).

We get V= n-f[2(a —m)x — a*]de,
and here our limits of integration are 0 and 2(« —m).
3
Hence V=a1r(a-—-7n)a=%,

if I is the altitude of the solid in question.

EXAMPLES.

(1) A cone of revolution and a paraboloid of revolution have
the same vertex and the same base; required the volume be-

2
tween them. o . mmh , where & is the altitude of the cone.
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(2) Find the volume included between a right cone, whose
vertical angle is 30°, and a sphere of given radius touching it

along a circle. Ans. 1_%4

Solids of Revolution. Polar Formula.

152. If we use polar codrdinates, and suppose the revolving
area broken up, as in Art. 138, into elements of which rd¢dr
is the one at any point P whose codrdinates are r and ¢, the
element rd¢dr will generate a ring whose volume will differ
from 277*sin ¢dgdr by an infinitesimal of higher order than the
second, if we regard d¢ and dr as of the first order; for it will
be less than a prism having for its base rd¢dr, and for its alti-
tude 27 (7 4dr)sin(¢ + do), and greater than a prism having
the same base and the altitude 27rsin¢; and these prisms
differ by an amount which is infinitesimal of higher order than
the second.

‘We shall have then

V=2x f f 7 sin gdrds, [1]
the limits being so taken as to bring in the whole of the gener-
ating area.

For example ; let us find the volume generated by the revolu-
tion of a cardioide about its axis.

r=2u(l—cos¢)
is the equation of the cardioide ;
V= an rr’sin¢drd¢.
Our first integral must be taken between the limits r = 0 and
r=2a(l—cos¢), and is

8—;—;(1 — cos ¢)3sin pdep.

V= ‘._fas,.-‘fh — cos¢)*sin ¢dg,

V= %4 wdd.
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ExAmMPLE.

A right cone has its vertex on the surface of a sphere, and its
axis coincident with the diameter of the sphere passing through
that point; find the volume common to the cone and the sphere.

Volume of any Solid. Triple Integration.

153. 1f we suppose our solid divided into parallelopipeds by
planes parallel to the three codrdinate planes, the elementary

parallelopiped at any point (,y,2) within the solid will have for
its volume AzAyAz, or, if we regard 2, y, and z as independent,
dxdydz ; and the whole volume

v={{ fasdyas, [1]

the limits being so chosen as to embrace the whole solid.

The integrations are independent, and may be performed in
any order if the limits are suitably chosen.

As it is important to have a perfectly clear conception of the
geometrical interpretation of each step in the process of ﬁudihg



176 INTEGRAL CALCULUS. [ART. 158.

a volume by a triple integration, we will consider one case in
detail.
Let the integrations be performed in the order indicated by

the formula
V= f f f dedydz.

If the limits are correctly chosen, our first integration gives
us the volume of a prism oune of whose lateral edges passes
through any chosen point P,(,y,z) within the solid, is parallel
to the axis of Z, and reaches directly across the solid from
surface to surface, while the base of the prism is the rectangle
dydz ; our second integration gives the volume of a right cylin-
der whose base is a plane section of the solid, passes through
the point P, and is parallel to the plane YZ, and whose altitude
is dz; and our third integration gives the volume of the whole
solid.

The limits in our first integration are, then, the values of 2
belonging to the point in the lower bounding surface and the
point in the upper bounding surface which have the codrdinates
2 and y; the limits in the second integration are the values of y
belonging to the two points in the perimeter of the projection
of the solid in the plane of XY which have the coérdinate «;
and the limits in the third integration are the least value and
the greatest value of = belonging to points on the perimeter of
the projection of the solid on the plane of XY,

It is easily seen from what has just been said that the limits
in the second and third integrations are precisely those we
should use if we were finding the area of the projection of the

solid by the formula
A= f f dydz.

Of course, it is necessary to have a clear idea of the form of
the solid whose volume is required.
For example, let us find the volume of the portion of the

ellipsoid B, R .
—,+F+c—,—

cut off by the codrdinate planes.
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V=fffdzdydx,
.. L
and our limits are, for z, 0 and ¢ -7 ——b—2 for y, 0 and

le——, and for z, 0 and a. For, starting at any point

(#,y,2) and integrating on the hypothesis that z alone varies, we
get a column of our elementary parallelopipeds having dxdy as a
base and passing through the point (z,y,2). To make this col-
umn reach from the plane XY to the surface, z must increase
from the value zero to the value belonging to the point on the
surface of the ellipsoid which has the coérdinates  and y; that

3
is, to the value c\/l—%—g- Then, integrating on the hy-

pothesis that y alone varies, we shall sum these columns and
shall get a slice of the solid passing through (z,y.z) and having
the thickness dz. To make this slice reach completely across
the solid, we must let y increase from the value zero to the
greatest value it can have in the slice in question ; that is, to the
value which is the ordinate of that point of the section of the
ellipsoid by the plane XY which has the abscissaz. The section
in question has the equation

therefore the required value of y is b !1 - i;
a

Last, in integrating on the hypothesis that 2 alone varies, we
must choose our limits so as to include all the slices just de-
scribed, and must increase « from zero to «.

fdz:z:c\ll——g—}:

between the limits 0 and C‘\’ 1— : [
o
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’ 2 9.
°f' r

_¢c " _ &

=3 b(l —y.dy

g[ 1_2’) y’+b’(l—f>sm"

s N

_T(l ::)
between the limits 0 and b,fl—i,’.

a
——f 1——1da:__’—'“—°9.
6

the volume required.

ExAMPLES.

(1) Find the volume obtained in the present articie, perform-
ing the integrations in the order indicated by the formula,

V= f f f dwdyds.
(2) Find the volume cut off from the surface
] 2
E— + I =2z
c b

by a plane parallel to that of YZ, at a distance « from it.
Ans. 7@®/ (be).

(3) Find the volume enclosed by the surfaces,

z’+y’=a| x2+y2=axa z=0. Ans 37l'((~‘.
BT
(4) Obtain the volume bounded by the surface
z2=a— V@ +y
3
and the planes v=z and x=0. Ans. 20,
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(5) Find the volume of the conoid bounded by the surface
z’+%£=c' and the planes z=0 and z=a. Ans. rc’Ta.

154. If we use polar coordinates we can take as our element

of volume
r? sin pdrdpdo,

an expression easily obtained from the element 2xr*sin¢drdd
used in Art. 152,

Then V=fff1’sin¢drd¢d0,

where the order of the integrations is usually immaterial if the
limits are properly chosen.
ExaMpPLEs.
(1) Find the volume of a sphere by polar codrdinates.
(2) Find the whole volume of the solid bounded by
@+ v +2°)° =27’ zyz.
Suggestion: Transform to polar codrdinates. Ans. ga‘.
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CHAPTER XIIL
CENTRES OF GRAVITY.

155. The moment of a force about an axis perpendicular to its
line of direction is the product of the magnitude of the force by
the perpendicular distance of its line of direction from the axis,
and measures the tendency of the force to produce rotation
about the axis.

The force exerted by gravity on any material body is propor-
tional to the mass of the body, and may be measured by the
mass of the body.

The Centre of Gravity of a body is a point so situated that the
force of gravity produces no tendency in the body to rotate about
any axis passing through this point.

The subject of centres of gravity belongs to Mechanics, and
we shall accept the definitions and principles just stated as data
for mathematical work, without investigating the mechanical
grounds on which they rest.

156. Suppose the points of a body referred to a set of three
rectangular axes fixed in the body, and let &,y,Z be the coérdi-
nates of the centre of gravity. Place
the body with the axes of X and Z
horizontal, and consider the tendency

Y P
of the particles of the body to produce
rotation about an axis through (z,y,%) zc y
parallel to OZ, under the influence of /
gravity. Represent the mass of an /3 £

0 =z x X

clementary parallelopiped at any point
(,y,2) by dm. The force exerted by
gravity on dm is measured by dm, and
its line of direction is vertical. If the mass of dm were concen-
trated at 2, the moment of the force exerted on dm about the
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axis through C would be (z —Z)dm, and this moment would
represent the tendency of dm to rotate about the axis in ques-
tion; the tendency of the whole body to rotate about this axis
would be 2(xz —z)dm. If now we decrease dm indefinitely, the
error committed in assuming that the mass of dm is concentrated
at P decreases indefinitely, and we shall have as the true expres-
sion for the tendency of the whole body to rotate about the axis

through C, f (x — Z)dm ; but this must be zero.

Hence J (@ —F)dm =0,

r=—- 1]

If we place the body so that the axes of ¥ and X are hori-
zontal, the same reasoning will give us

f ydm . 2]

y= 3
fdm

and in like manner we can get

zdm

fdm : (3]

Since fdm is the mass of the whole body, if we represent it

—

zZ=

by M we shall have r
xdm
r="=" )
M
_ ryd-m
ST
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EXAMPLE.

Show that the effect of gravity in making a body tend to rotate
about any given axis is precisely the same as if the mass of the
body were concentrated at its centre of gravity.

157. The mass of any homogeneous body is the product of
its volume by its density. If the body is not homogeneous, the
density at any point will be a function of the position of that
point. Let us represent it by x. Then we may regard dm as
equal to «dv if dv is the element of volume, and we shall have

zxdv
l?xd’l) [ ' ]

and corresponding formulas for 7 and z.
If the body considered is homogeneous, « is constant, and we
shall have

X=

s (2]

v= fdv V ’ [3]

f dv v (4]

In any particular problem we have only to express dv in
terms of the codrdinates.

Plane Area.

158. If we use rectangular coérdinates, and are dealing with
a plane area, where the weight is uniformly distributed, we have

dv = dd = dxdy. (Art. 186).
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Hence, by 157, [2] and [3],

N i
f dzdy
J S |

If we use polar codrdinates,

. (1]

<
Il

dv=dA = rd¢dr,

_ f 72 cos p dpdr )

ffﬁsm¢d¢dr i [_2)

For example ; let us find the centre of gravity of the area be-
tween the cissoid and its asymptote. From the equation of the
cissoid

2

0
—r

y2=a

we see that the curve is symmetrical with respect to the axis
of X, passes through the origin, and has the line z=a as an
asymptote. From the symmetry of the area in question, § =0,

and we need only find Z.
f:rdz/d:c f xydx

J f dydx [ ydx
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L f ]
‘j:(a —x)‘dx_ gaﬂﬂ —-":)‘dz
a x’

SeZm® oo

z=4%a.

z=

; by Art. 64 [4].

As an example of the use of the polar formulas [2], let us find
the centre of gravity of the cardioide

r=2a(l—cos¢).

Here, from the fact that the axis of X is an axis of symmetry,
we know that y = 0.

T r
.I or’ cos pdrde
2 N
f j rardep
0 (

84°

3 72‘:con¢d¢ Y H-—cos«#)’cosd»dqb

=

4+ 13’:i¢ 2a? zflr-—- cos¢)?de
jo'zZosd: —8cos’¢ + 3cos’p—cos'p)dp =—Ipn;

27
and £(1—2cos¢+cos’¢)d¢=31r.

Hence z=-—ja.

EXAMPLES.

1. Show that formulas [1] hold even when we use oblique
coordinates.

2. Find the centre of gravity of a segment of a parabola cut
off by any chord.

Ans. z=%a, y=0. If the axes are the tangent parallel
to the chord and the diameter bisecting the chord.
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8. Find the centre of gravity of the area bounded by the semi-
cubical parabola ay® =2 and a double ordinate. Ans. z=§=.

4. Find the centre of gravity of a semi-ellipse, the bisecting
line being any diameter.

Ans. If the bisecting diameter is taken as the axis of Y, and

the conjugate diameter as the axis of X, 7= ‘5‘3, g=0.
™

5. Find the centre of gravity of the curve y*= b"?-

Ans. z=}a.
6. Find the centre of gravity of the cycloid.
Ans. z=an, J=4a.
7. Find the centre of gravity of the lemniscate 7* = a®cos 2 ¢.
Ans. T= %ia.
8. Find the centre of gravity of a circular sector.
Ans. If we take the radius bisecting the sector as the axis

of X, and represent the angle of the sector by 2a,z =$ 45na,

9. Find the centre of gravity of the segment of an ellipse cut

- a = b
off by a qgadrantal chord. Adns. z=% —3 =% —
10. Find the centre of gravity of a quadrant of the area of the
curve a2t 4 yt = al. Ans. F=7=35¢
™

159. If we are dealing with a homogeneous solid formed by
the revolution of a plane curve about the axis of X, we have

dv = 2 rydydzx. (Art. 151 [1])

Hence, by Art. 157 [2],
[ vt
e/ e [1]

E—W-
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If we use polar codrdinates,
dv = 2w sin pdrdg. (Art. 152 [1].)
_ f fr’ sin ¢ cos ¢pdrde
=" .

B fj'r’ sin ¢pdrde

For example ; let us find the centre of gravity of a hemisphere.
The equation of the revolving curve is 2* + y* == «*.

Hence

(2]

a J_a’ —z

a Yar-z@ P (s

If we use polar coordinates the equation of the revolving curve
Isr=a.

‘I; ajo‘ ?"sincb cos ¢pdepdr
i‘a‘fj}i sin pdpdr -

ExaMrLEs.

dat_

ad

Here T =

1. Find the centre of gravity of the solid formed by the revolu-
tion of the sector of a circle about one of its extreme radii.

Ans. Z=3%acos’$fB, where B is the angle of the sector.

2. Find the centre of gravity of the segment of a paraboloid
of revolution cut off by a plane perpendicular to the axis.
Ans. ¥ =%a, where ¥ = a is the plane.

8. Find the centre of gravity of the solid formed hy scooping
out a cone from a given paraboloid of revolution, the bases of
the two volumes being coincident as well as their vertices.

Ans. The centre of gravity bisects the axis.
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4. A cardioide is made to revolve about its axis; find the
centre of gravity of the solid generated. Ans. F=—§a.

5. Obtain formulas for the centre of gravity of any homo-
geneous solid.

6. Find the centre of gravity of the solid bounded by the
surface 2 = zy and the five planes x=0, y=0, 2=0, z=a, y=b.
Ans. Z=¢a, = §b, Z=yalbl.

160. If we are dealing with the arc of a plane curve, the
formulas of Art. 157 reduce to

J.:uls

2= ’ [l]
fas

ExAMPLES.

1. Find the centre of gravity of an arc of a circle, taking the
diameter bisecting the arc as the axis of X and the centre as the
origin. Ans. F="2, where c is the chord of the arc.

s

2. Find the centre of gravity of the arc of the curve 2t 4yt=al

between two successive cusps. Ans. 2=y = }a.

3. Find the centre of gravity of the arc of a semi-cycloid.
Ans. z=(r—4)a, y=—4%a.

4. Find the centre of gravity of the arc of a catenary cut off
by any horizontal chord.

trs. 320, 5=,

5. Obtain formulas for the centre of gravity of a surface of
revolution, the weight being uniformly distributed over the
surface.

where 23 is the length of the arc.
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6. Find the centre of gravity of any zone of a sphere.
Ans. The centre of gravity bisccts the line joining the centres
of the bases of the zone.

7. A cardioide revolves about its axis; find the centre of
gravity of the surface generated. Ans. x=—1%0a.

8. Find the centre of gravity of the surface of a hemisphere
when the density at each point of the surface varies as its per-
pendicular distance from the base of the hemisphere.

Ans. z=%a«.

9. Find the centre of gravity of a quadrant of a circle, the
density at any point of which varies as the nth power of its
distance from the centre. Ans. &

I
<i
i
i

10. Find the centre of gravi‘y of a hemisphere, the density
of which varies as the distance from the centre of the sphere.
Ans. Z=%a.

Properties of Guldin.

161. I. If a plane area revolve about an axis external to
itself through any assigned angle, the volume of the solid gene-
rated will be equal to a prism whose base is the revolving area
and whose altitude is thie length of the path described by the
centre of gravity of the area.

II. If the arc of a plane curve revolve ahout an external axis
in its own plane through any assigned angle, the area of the
surface generated will be equal to that of a rectangle, one side
of which 18 the length of the revolving curve, and the other the
length of the path described by its centre of gravity.

First; let the area in question ‘revolve about the axis of X
through an angle ®. The ordinate of the centre of gravity of
the area in question is

f ydxdy

y=-—fﬁ—my,

by Art. 158 [1].
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The length of the path described by the centre of gravity

of f

. 1)
f f dxdy
The volume generated is

F= o f f ydxdy, by Art. 151.

Hence V=yo f f(l.uly.

But f f dxdy is the revolving area, and the first theorem is

established.
We leave the proof of the second theorem to the student.

yo=

EXAMPLES.

1. Find the surface and volume of a sphere, regarding it as
generated by the revolution of a semicircle.

2. Find the surface and volume of. the solid generated by the
revolution of a cycloid about its base.

3. Find the volume and the surface of the ring generated by
the revolution of a circle about an external axis.

Ans. V=27%%, S=47r%b, where D is the distance of
the centre of the circle from the axis.

4. Find the volume of the ring generated by the revolution of
an ellipse about an external axis.

Ans. V=2r"ubc, where ¢ is the distance of the centre of the
ellipse from the axis.
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CHAPTER XIV.
LINE, SURFACE, AND SPACE INTEGRALS.

162. Any variable which depends for its value solely upon
the position of a point, as, for example, any function of the
rectangular or polar codrdinates of the point, may be called
a point-function.

A point-function is said to be continuous along a given line
if its value changes continuously as the point, on whose position
the function depends for its value, moves along the line; it is
said to be continuous over a given surface if its value changes
continuously as the point is made to move at pleasure over the
surface; and it is said to be continuous throughout a given
space if its value changes continuously as the point is made to
move about at pleasure within the space.

163. If a given line is divided in any way into infinitesimal
elements, and the length of each element is multiplied by the
value a given point-function, which is continuous along the line,
has at some point within the element, the limit approached by
the sum of these products as each element is indefinitely de-
creased, is called the line integral of the given function along
the line in question.

If a given surface is divided in any way into infinitesimal
elements such that the distance between the two most widely
separated points within each element is infinitesimal, and the
area of each element is multiplied by the value a given point-
function, which is continuous over the surface, has at some
point within the element, the limit approached by the sum of
these products as each element is indefinitely decreased, is
called the surface integral of the given function over the surface
in question.
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If a given space is divided in any way into infinitesimal
elements such that the distance between the two most widely
separated points within each element is infinitesimal, and the
volume of each element is multiplied by the value a given point-
function, which is continuous throughout the space, has at
some point within the element, the limit approached by the
sum of these products as each element is indefinitely decreased,
is called the space integral of the given function throughout
the space in question.

It is easily seen that the line integral of unity along a given
line is the length of the line; that the surface integral of unity
over a given surface is the area of the surface; and that the
space .ntegral of unity throughout a given space is the volume
of the space.

In the chapter on Centres of Gravity we have had numerous
simple examples of line, surface, and space integrals.

164. That the value of a line, surface, or space integral is
independent of the position in each element of the point at
which the value of the given function is taken can be proved
as follows: The distance apart of any two points in the same
infinitesimal element is infinitesimal (Art. 163), therefore the
values of a continuous function taken at any two points in
the same element will differ in general by an infinitesimal ; the
products obtained by multiplying these two values by the mag-
nitude of the element will, then, differ by an infinitesimal of
higher order than that of the element; thercfore, in forming
the integral either of these products may be used in place of
the other without changing the result. (I. Art. 161.)

165. The line integral of a function along a given line is
absolutely independent of the manner in which the line is
broken up into infinitesimal elements, and is equal to the length
of the line multiplied by the mean valie of the function along
the line; the mean value of the function being defined as fol-
lows: Suppose a set of points uniformly distributed along the
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line, that is, so distributed that the number of points in any
portion of the line is proportional to the length of the portion ;
take the value of the function at each of these points; divide
the sum of these values by the number of the points; and the
limit approached by this quotient as the number of the points
is indefinitely increased is the mean value of the given function
along the line; and this mean value is in general finite and
determinate.

To prove our proposition, we have only to consider in detail
the method of finding the mean value in question. Let the
number of points in a unit of length of the line be k. Then,
no matter how the line is broken up into infinitesimal elements,
the number of points in each element is k times the length of the
element. Since any two values of the function corresponding to
points in the same element differ by an infinitesimal, in finding
our limit we may replace all values corresponding to points in
the same element by any one ; hence the sum of the values cor-
responding to points in the same element may be replaced by one
value multiplied by the number of points taken in that element,
that is, this smin may be replaced by k times the product of one
value by the length of the element; and the sum of the values
corresponding to all the points taken in the line may be replaced
by k times the sum of the terms obtained by multiplying the
length of each clement by the value of the function at some
point within the element. When we divide this sum by the whole
number of points considered, that is, by & times the length of
the line, the &’s cancel out, and the required mean value reduces
to the limit of the numerator divided by the length of the line,
and the limit of the numerator is the line integral of the func-
tion along the line. Therefore the line integral is the mean
value of the function multiplied by the length of the line.

The same proof may be given for a surface integral or for a
space integral. The former is the product of the area of the
surface by the mean value of the function over the surface;
the latter is the volume of the space multiplied by the mean
value of the function throughout the space; and both are inde-
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pendent of the way in which the surface or space may bhe divided
into infinitesimal elements.

166. If the line along which the integral is taken is a plane
curve, it is easy to get a geometrical representation of the
integral. For, if at every point of the line a perpendicular to
the plane of the line is erected whose length is equal to the
value of the function at the point, the line integral required
clearly represents the area of the cylindrical surface containing
the perpendiculars if the values are all of the same sign, and
represents the difference of the areas of the portions of the
cylindrical surface which lie on opposite sides of the line if the
values of the function are not all of the same sign.

A similar construction shows that a surface integral over a
plane surface may be represented by a volume or by the differ-
ences of volumes. Consequently, in each case if the function
is finite and continuous, the integral is finite and determinate.

167. As examples of line, surface, and space integrals, we
will calculate a few moments of inertia.

The moment of inertia of a body about a given axis may be
defined as the space integral of the product of the density at
any point of the body by the square of the distance of the point
from the axis; the integral being taken throughout the space
occupied by the body.

If the body considered is a material surface or a material
line, the integral reduces to a surface integral or to a line
integral.

In the examples taken below the body is supposed to be
homogeneous.

(a) The moment of inertia of a circumference about a given
diameter.
Using polar codrdinates and taking the diameter as our axis,

2
I= j a? sin’ ¢ - kade = kadar
0
=} Md?, [1]
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if I is the moment of inertia, and a tbhe radius, k the density,
and M the mass of the circumference in question.

() The moinent of inertia of the perimeter of a square about
an axis passing through the centre of the square and parallel
to a side.

I= 2f'y=kdy+ 2f'a'kdz
=1 M, [2]
if 2a is the length of a side.
(¢) The moment of inertia of a circle about a diameter.
I= (" (7 st erat
_j:jo' sin’¢ . krdgdr = }
=} Md®. 3]

(d) The moment of inertia of a square about an axis through
the centre of the square and parallel to a side.

I =i:£:fkdxdy = §ka*
=} Ma’. [4]

(¢) The moment of inertia of the surface of a sphere about
a diameter.

I= j il [ a sints. ka* sin ddd = §kenat
= § M. (5]

(f) The moment of inertia of the surface of a cube about an
axis parallel to an edge and passing through the centre.

I= 4f'f'(a=+z*)kdxdz+2f"f°(y2+z’)kdydz
= 8 kat + 3¢ kat

=19 Ma'. (6]
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(9) The moment of inertia of a sphere about a diameter.

1=£".£'J:;= sin b . kr? sin ¢ drdepdf = s kra®
= 3 Ma®. [7]

(k) The moment of inertia of a cube about an axis through
the centre and parallel to an edge.

I=I:I:I:(f+é)kdwydz=1§h‘

= } M a’. [8]
EXAMPLES.

Find the moments of inertia of the following bodies :

(1) Of a straight line about a perpendicular through an
extremity ; about a perpendicular through its middle point.

: Ans. § MU ; 1 M2,

(2) Of the circumference of a circle about an axis through

its centre perpendicular to its plane. Ans. Ma?.

(3) Of a circle about an axis through its centre perpendicular
to its plane. Ans. § Ma?.

(4) Of a rectangle whose sides are 2a, 2b, about an axis
through its centre perpendicular to its plane; about an axis
through its centre parallel to the side 2b.

Ans. $ M(a*+b%); } Ma®.

(5) Of an ellipse about its major axis ; about its minor axis;
about an axis through the centre perpendicular to the plane of
the ellipse. Ans. 3} Mb*; } Ma*; } M(a®+b%).

(6) Of an ellipsoid about the axis a. Ans. 1 M(V*+¢*).

(7) Of a rectangular parallelopiped about an axis through
the centre parallel to the edge 2a. Ans. } M(Y* +¢).

(8) Of a segment of a parabola about the principal axis.
Ans. } Mb*, where 2b is the breadth of the segment.
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168. If u, D,u, and D,u are finite, continuous, and single-
valued for all points in a given plane surface bounded by a
closed curve T, the surface integral of D,u taken over the surface
i3 equal to the line integral of ucosa taken around the whole
bounding curve, where a is the angle made with the axis of X
by the external normal at any point of the boundary.

This may be formulated thus:

ffD,udxdy = | ucosa.ds. 1]

Let the axes be chosen 8o that the surface in question lies in
the first quadrant, and divide the projection of T on the axis
of Y into infinitesimal elements of which any one is dy.

[

On each of these elements as a base erect a rectangle; and
since T is a closed curve, each of these rectangles will cut it
an even number of times.

Let us call the values of » at the points where the lower side
of any one of these rectangles cuts T, uy, uy ug u,, ete., re-
spectively ; the angles which this side makes with the exterior
normals at these points, aj, ay, a3, a4, etc.; and the elements
which the rectangle cuts from T, ds,, ds,, dss, ds,, etc.

It is evident that whenever a line parallel to the axis of X
cuts into the surface bounded by 7', the corresponding value of
a is obtuse and its cosine negative; that whenever it cuts out,
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a is acute and its cosine positive; and that any value of a is
the angle which the contour T' itself makes at the point in ques-
tion with the axis of Y if we suppose the contour traced by a
point moving so as to keep the bounded surface always on the
left hand.

We have then approximately,

dy= —ds, - c0Sa;=d8; - CO8az= — 83 - COBay=d8,+ COBay="++-. [2]

If, now, in f f D,udxdy we perform the integration with
respect to , and introduce the proper limits, we shall have

ffD,udwdy =fdy(—u1+ua—ua+u4---); (3]

and the second member indicates that we are to form a quantity
corresponding to that in parenthesis for every rectangle which
cuts 7', to multiply it by the base of the rectangle, and then to
take the limit of the sum of the results as all the bases are
indefinitely decreased.

By [2],
dy(—wy+us — us+u,-0)
= u,c08a,d$; + Uy COSay ds; + u3CO8aydsy + u CO8asds, + -+ 5 [4]

and the limit of the sum of the values any one of which is
represented by the second member of [4] is clearly | ucosads
taken around the whole of T

ExAMPLE.

Prove that under the conditions stated in the last article
f D,udxdy = | ucospB.ds,

where 8 is the angle made with the axis of Y by the exterior
normal.
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169. As an illustration of the last proposition, let us find the
centre of gravity of a semicircle.

We have §= % f f ydady. 1)

But we may write y=D,(xy). Hence, by Art. 168,

y= % fydxdy=—fwyc08ada

%(facosd:asm¢cos¢ad¢+fx 0. cos— dx)
_L’- —a’+0=é(—l,
BT 3x
2

which agrees with the result of Ex. 8, Art. 158.

As a second example, we shall find the moment of inertia of
a circle about a diameter.
‘We have

I=kffy’dxdy=kfa:y’cos¢.ds
=k‘£2:tcos¢a’sin’¢cos¢ad¢

Y ) 2 k_o_1ars
=ka'| sin¢ cos 4>d4>=i1ra =1Ma y
[]

which agrees with the result of (c), Art. 167,

ExawmpLEs.
(1) Find the centre of gravity of a semicircle, using the

theoremffD,udxdy = fucosB.ds.

(2) Find the moment of inertia of a circle about an axis
through its centre perpendicular to its plane, using the principles

f ‘l),udxdy= ucosa.ds and ffD,udxdy: ucosf.ds.
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170. Since, as we have seen in Art. 168, a is the angle which
the curve T makes with the axis of Y¥; if we trace the curve
8o as to keep the bounded space on our left, it follows that
cosa.ds = dy.

Hence f fD,udwdy =fudy; (1]

and in like manner,
ffD,uda:dy =— | udz; [2]

the first integral in [1] and [2] being taken over the bounded
surface, and the second around the bounding curve.

For example, the moment of inertia of a square about an
axis through the centre and parallel to a side is

I=k f f Y dady. ((d) Art. 167.)

By (1], [ fvasty= fzyay,

and the last integral is to be taken around the perimeter.
Hence

I=kU_':ay'dy +£Zla¢dy)]=2mﬁ:¢dy= that

=} Ma’.
ExXAMPLE.

Work Ex. 8, Art. 167, by the aid of (2).

171. Ir U, D,U, D,U, and D,U are finite, continuous,
single-valued functions throughout the space bounded by a given
closed surface T, the space integral of D, U taken throughout the
space in question i3 equal to the surface integral, taken over the
bounding surface, of U cosa, where a is the angle made with
the axis of X by the exterior normal at any point of the surface.

This may be formulated thus:

f f D,Udzdydz= f Ucosa.dS. (1]
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The proof is almost identical with that given in Art. 168,
except that for elementary rectangle we use elementary prism.

We shall merely indicate the steps.

N Y
Vil

_______

z
dydz = — dS, cosa, = dS; cosa; = — dS; cosay = ..

ff D,dedydz=ffdydz[_v,+U,_U,...]

= the limit of the sum of terms of the form
U, cosa,.dS, + Uz cosay. dS; + U cosas. dS; + +o¢

=fU cosa.dS.
EXAMPLE.

Prove that under the conditions of the last article

f f D, Udzdydz = f Ucosf. ds,

and fffD,dedydz=onos-y.dS,

where B and y are the angles made with the axes of ¥ and Z
respectively by the extcrior normal to the bounding surface.
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172. As an illustration, let us find the centre of gravity of a

hemisphere.
-k kfx’
= — dz=— | = .
x ff zdxdy 5 cosa as

We have
=Lf”f§a’cos’¢ cos ¢ a’sin ¢ depdo
2MJo Jo

atk (™

- cos®¢ sin ¢ dgpdl
0 0
= a‘k .£=§a

$na’k 2 8’

which agrees with the result of Art. 159.

ExXAMPLE.

Find the moment of inertia of a sphere about a diameter; of
a cube about an axis through the centre parallel to an edge.
Make your work depend upon finding the value of a surface
integral.
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CHAPTER XV.
MEAN VALUE AND PROBABILITY.

173. The application of the Integral Calculus to questions
“in Mean Value and Probability is a matter of decided interest;
but lack of space will prevent our doing more than solving
a few problems in illustration of some of the simplest of the
methods and devices ordinarily employed. A full and admirable
treatment of the subject is given in ¢ Williamson’s Integral
Calculus” (London: Longmans, Green, & Co.); and numer-
ous interesting problems are published with their solutions
in ‘“The Mathematical Visitor” and ¢ The Annals of Mathe-
matics.”

174. The mean of n quantities is their sum divided by their
number. If the number of quantities considered is supposed
to increase indefinitely according to some given law, the prob-
lem of finding the limiting value approached by their mean
usually calls for the Integral Calculus. The mean value of a
continuous function of one, two, or three independent variables
has been carefully defined in Art. 163, and has been proved to
depend upon a line, surface, or space integral.

(a) Let us find the mean distance of all the points on the
circumference of a circle from a given point on the circumfer-
ence.

If we take the given point as origin, the distances whose
mean is required are the radii vectores of points uniformly dis-
tributed along the circumference of the circle.

The required mean is, therefore, by Art. 165, equal to
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the quotient obtained by dividing the line integral of » taken
around the circumference by the length of the circumference g

that is,
! rds
= 2wa
The polar equation of the circle is
r=2acos¢;

ds = 2ade,

M——f 4a? cos¢d¢_—a

the required mean value.

(b) Let us find the mean distance of points on the surface
of a circle from a fixed point on the circumference.

Here, by Art. 165, the required mean is the surface integral
of r taken over the circle, divided by the area of the circle;
that is,

2a col¢

32a

7rll‘; -s

(¢) The problem of finding the mean distance of points on
the surface of a square from a corner of the square can be sim-
plified slightly by considering merely one of the halves into
which the square is divided by a diagonal.

Here

asecd

M=-—f fr rdrdeg

al. /5 3
= - 2 tan — )
3(\/ + log n8>
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(d) As an example of a device often employed, we shall now
solve the problem, To find the mean distance between two points
within a given circle.

If M be the required mean, the sum of the whole number of
cases can be represented by (m*)?M, r being the radius of the
circle ; since for each position of the first point the number of
positions of the second point is proportional to the area of the
circle, and may be measured by that areca; and as the number
of possible positions of the first point may also be measured
by the area of the circle, the whole number of cases to be con-
sidered is represented by the square of the area; and the sum
of all the distances to be considered must be the product of the
mean distance by the number.

Let us see what change will be produced in this sum by in-
creasing r by the infinitesimal dr; that is, let us find d(=**M).

If the first point is anywhere on the annulus 2 =r.dr, which we
have just added, its mean distance from the other points of the

circle is 32—7, by ().,
97

Therefore, the sum of the new distances to be considered,

if the first point is on the annulus, is %2' =2, 27wrdr; but the
™

second point may be on the annulus, instead of the first; so that
to get the sum of all the new cases brought in by increasing
r by dr, we must double the value just obtained.

Hence d(7r*M) = 1§8 mdy,

Pa'M =138 f dr = 338 ra,
1280
457

M=

175. In solving questions in Probability, we shall assume
that the student is familiar with the clements of the theory as
given in ¢ Todhunter’s Algebra.”

(a) A man starts from the bank of a straight river, and
walks till noon in a random direction ; he then turns and walks
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in another random direction ; what is the probability that he will
reach the river by night?

Let 6 be the angle his first course makes with the river. If
the angle through which he turns at noon is less than = — 26,
he will reach the river by night. For any given value of 6,
=20 The probability that
a9

then, the required probability is =
0 shall lie between any given value 6, and 6, + d@ is —

The chance that his first course shall make an angle with the
river between 6, and 6, + df, and that he shall get back, is

T—26 df 57—20!

27 §7r

As 0 is equally likely to have any value between 0 and_, the
required probability,

ﬂ'
_ (((r—26)do __
p— A 7l'2 -

(b) A floor is ruled with equidistant straight lines; a rod,
shorter than the distance between the lines, is thrown at ran-
dom on the floor; to find the chance of its falling on one of the
lines..

Let x be the distance of the centre of the rod from the nearest
line ; @ the inclination of the rod to a perpendicular to the paral-
lels passing through the centre of the rod; 2a the common dis-
tance of the parallels; 2c¢ the length of the rod.

In order that the rod may cross a line, we must have
ccosf > x; the chance of this for any given value 2, of z is

1
- cos—1%e,
T C

The probability that x will have the value z, is @ The
probability required is ¢
2 (° 2c
p=gf oo Tda= 0
This problem may be solved by another method which pos-
sesses considerable interest.
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k 3

Since all values of z from 0 to a. and all values of § from -3
to g are cqually probable, the whole number of cases that can

arise may be represented by

j:“ dzdf = =a.

17

The number of favorable cases will be represented by

e cos 6
f dzdf = 2c.
~3=0

Hence p=—

(¢) To find the probability that the distance of two stars,
taken at random in the northern hemisphere, shall exceed 90°.

Iet « be the latitude of the first star. With the star as a
pole, describe an arc of a great circle, dividing the hemisphere
into two lunes; the probability that the distance of the sec-
ond star from the first will exceed 90° is the ratio of the lune
not containing the first star to the hemisphere, and is equal

to (&7:.3-)-. The probability that the latitude of the first star
mw
will be between o and a 4 da is the ratio of the area of the

zone, whose hounding circles have the latitudes a and a 4 da
respectively, to the area of the hemisphere, and is

27a® cosada
2 ra?

T
Ienco P =f¥@_—a)cosm da=".
0 T

ko

= cosa da.

(2) A random straight line meets a closed convex curve;
what is the probability that it will meet a second closed convex
curve within the first?

If an infinite number of random lines be drawn in a plane, all
directions are equally probable; and lines having any given
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direction will be disposed with equal frequency all over the
plane. If we determine a line by its distance p from the origin,
and by the angle a which p makes with the axis of X, we can get
all the lines to be considered by making p and a vary between
suitable limits by equal infinitesimal increments.

In our problem, the whole number of lines meeting the exter-

nal curve can be represented by f f dpda. If the origin is

within the curve, the limits for p must be zero, and the perpen-
dicular distance from the origin to a tangent to the curve; and
for a must be zero and 2x. If we call this number N, we

shall have o
N= f pde,
1)

p being now the perpendicular from the origin to the tangent.

If we regard the distance from a given point of any closed
convex curve along the curve to the point of contact of a tan-
gent, and then along the tangent to the foot of the perpendicu-
lar let fall upon it from the origin, as a function of the a« used
above, its differential is easily seen to be pda. If we sum these
differentials from a=0 to a= 2w, we shall get the perimeter
of the given curve.

2T
Hence N =fpda =1L,
0

where L is the perimeter of the curve in question. By the same
reasoning, we can see that n, the number of the random lines
which meet the inner curve, is equal to /, its perimeter. For p,
the required probability, we shall have

) = —.
r=7
EXAMPLES.

(1) A number n is divided at random into two parts; find the
mean value of their product. Ans n?
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(2) Find the mean value of the ordinates of a semicircle, sup-
posing the series of ordinates taken equidistant. Ans. %a.
4

(8) Find the mean value of the ordinates of a semicircle, sup-
posing the ordinates drawn through equidistant points on the
circumference. Ans 2a

™

(4) Find the mean values of the roots of the quadratic
' — ax + b =0, the roots being known to be real, but b being
unknown but positive. Ans. Sa and %

(5) Prove that the mean of the radii vectores of an ellipse, the
focus being the origin, is equal to half the minor-axis when they
are drawn at equal angular intervals, and is equal to half the
major axis when they are drawn so that the abscissas of their
extremities increase uniformly.

(6) Suppose a straight line divided at random into three
parts ; find the mean value of their product. a®

Ans. —.
6

(7) Find the mean square of the distance of a point within a
given square (side=2a) from the centre of the square.

Ans. $a.

(8) A chord is drawn joining two points taken at random on

a circumference ; find the mean area of the less of the two seg-

ments into which it divides the circle. Ans. ™€ _ a

4 T

(9) Find the mean latitude of all places north of the equator.

Ans. 32°.7.

(10) Find the mean distance of points within a sphere from

a given point of the surface. Ans. §a.

(11) Find the mean distance of two points taken at random
within a sphere. Ans. 34a.

(12) Two points are taken at random in a given line a; find
the chance that their distance shall exceed a given value c.

3
Ans. (a ; c) .
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(13) Find the chance that the distance of two points within
a square shall not exceed a side of the square. ~ Ans. = — 28,

(14) A line crosses a circle at random ; find the chances that
a point, taken at random within the circle, shall be distant from
the line by less than the radius of the circle. Ans. 1—-2.
™
(15) A random straight line crosses a circle ; find the chance
that two points, taken at random in the circle, shall lie on
opposite sides of the line. Ans 128
" 454
(16) A random straight line is drawn across a square ; find
the chance that it intersects two opposite sides. Ans. § log 2
ns. § ———-
m
(17) Two arrows are sticking in a circular target; find the
chance that their distance apart is greater than the radius.
Ans. 3—\/ﬁ-
4x
(18) From a point in the circumference of a circular fleld a
projectile is thrown at random with a given velocity which is
such that the diameter of the field is equal to the greatest range
of the projectile: find the chance of its falling within the field.

Ans. =2(va—1).

(19) On a table a series of equidistant parallel lines is drawn,
and a cube is thrown at random on the table. Supposing that
the diagonal of the cube 18 less than the distance between con-
secutive straight lines, find the chance that the cube will rest
without covering any part of the lines.

Ans. 1 — 4;::' , where a is the edge of the cube and ¢ the dis-
tance between consecutive lines.
(20) A plane area is ruled with equidistant parallel straight

lines, the distance between consecutive lines being c. A closed
curve, having no singular points, whose greatest diameter is less
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than ¢, is thrown down on the area. Find the chance that the
curve falls on one of tise lines.
Ans. L. where 1 is the perimeter of the curve.
<

(21) During a heavy rain-storm. a circular pond is formed in
s circular field. If & man undertakes to crosa the field in the
dark, what is the chance that be will walk into the pond?
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CHAPTER XVI
ELLIPTIC INTEGRALS.

176. In attempting to solve completely the problem of the
motion of a simple pendulum by the methods of I. Chapter
VIII. we encounter an integral of great importance which we
have not yet considered. The problem is closely analogous to
that of the Cycloidal pendulum (I. Art. 119).

For the sake of simplicity we shall suppose the pendulum
bob to start from the lowest point of its circular path with the
initial velocity that would be acquired by a particle falling
freely in a vacuum through the distance y,; and this by I. Art.
114 [1] is V2gy,.

Forming our differential equation of motion as in I. Art. 118,
but taking the positive direction of the axis of ¥ upward, we
have &'s

a¢
Multiplying by 2%: and integrating,

d
=—g2t (¢))

2
v’=(%8) =—2gy+C,

or, determining C,

o= (%">’= 29 (%—9)- @)

If the starting-point is taken as the origin, the equation of
the circular path is 2*+ y* — 2ay =0, whence

(&) =5m=p(a)

— % YW o=
and we have o —p & 9(Y—¥)»
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- ady .
V29 . V(% —y) (Zay— o)

Integrating, and determining the arbitrary constant, we get

or

—_a dy 3
*/2_é‘£ V(%—9) (2ay—v") @

a8 the time required to reach that point of the path which has
the ordinate y.
The substitution of z*= % reduces (3) to the form

a (* dz
=\s ' )
gj‘: Y
\!(1 .—z’) (1 ——2%2:’)
where the integral is of the form
* dz
5
j‘:\/(l—z’)(l—k’z’)’ ®)

k* being positive and less than unity if y, is less than 2a. An
examination of equation (2) will show that if this is true, the
pendulum will oscillate between the two points of the arc which
have the ordinate y,.

If y, is greater than 2a, the pendulum will make complete

revolutions. For this case the substitution of #*= l in (8)
will reduce it to

— 2 *
t_a\/;f\/a_x’)(l— a:’> ©

where the integral is of the form (5), k® being positive and less
than unity.

The time required for the pendulum to reach its greatest
height — that is, in the first case, the time of a half-vibration,
and in the second case, the time of a half-revolution — will
depend upon

=== ©)
o V(1T =2) (1 —%2)
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177. The length of an arc of an Ellipse, measured from the
extremity of the minor axis, has been found to be (Art. 107)

8= j\[%"_%?.az. )

If we replace g by z, (1) becomes

_ (.=
s_.aj‘: ,[ el @)

and the integral is of the form

- T—kz
J: Tz @)

where k* is positive and less than unity.
The length of an Elliptic quadrant depends upon the integral

g
jo' EL . an )

178. It can be shown by an elaborate investigation, for
which we have not room, that the integral of any algebraic
function, which is irrational through containing under the square
root sign an algebraic polynomial of the third or fourth degree,
can by suitable transformations be made to depend upon one
or more of the three integrals

_(* dz
Fk2) —j: V-1 -Fz) (]
E (k,x) =£’ ll—_k,: - dz, 2]

= dz
k,z) = , 3
(n, ,2) ~£(l+nz’)\/(l—x’)(l——k’z’) (3]

which are known as the Elliptic Integrals of the first, second,
and third class respectively.



214 INTEGRAL CALCULUS. [AxT. 179.

k, which may always be taken positive and less than 1, is
called the modulus; and n, which may be taken real, is called
the parameter of the integral.

t dz
K=F(k1)= , 4
) ~£‘\/(1—-x’)(l—k’a:’) (4]
and E=E®D= '\/;‘l—_’““;f" . dz, [5]

aro known as the Complete Elliptic Integrals of the first and
second classoes.

179. The substitution of  =sin¢ in the Elliptic Integrals
reduces them to the following simpler forms.

. ¢ de ¢ dg
ko)== ("-—3 = .
Fibe) j‘: V1 = ksin’¢ -£ A¢ [
E(k,¢)=£‘\/ﬁ‘1-mm¢.d¢ =£‘A¢.d¢. [2]
d¢ =
Bk ¢) J (1+nsin*¢) Vi—A¥sin'¢ f(l+nsm’¢)A¢
(3]
K- g,
f‘\/l—k’qm’¢ f (4]

E=£'x/1-k’gin*¢.d¢ =£’A¢.d¢. [5]

¢ is called the amplitude of the Elliptic Integral, and
A¢ = V1 —Rk'sin’¢ is called the delta of ¢, or more simply,
delta ¢, and is regarded as a new trigonometric function : it is
always taken with the positive sign, and has an analogy with
cos ¢.

For a given value of k, A¢ is easily seen to be a periodic
unction of ¢ having the period =. It has its maximum value 1

el &

it AN

li N ':Zly‘
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when ¢ =0 and when ¢ =, and its minimum value V1 — &,
which is usually represented by k' and called the complementary

modulus, when ¢ = g; and A(g + a) = A(g - )

Landen’s Transformation.

180. The approximate numerical value of an Elliptic Integral
of the first class, when % and ¢ are given, is easily computed
by the aid of two valuable reduction formulas due to Landen.

It in F(k,$)= f 4
( Vi— k’ sin?¢
we replace ¢ by ¢,, ¢, and ¢ being connected by the relation
_  8in2¢, 1
tan¢—k+cos2¢,’ S

which is easily transformable into either of the following :

ksing =sin (24, — ¢), (2)
tan (¢ — ) = & Tr ktanqb., 3)
(] ¢ d é1 d¢l
J; —\/l—jﬁm reduces to 1+ kf \/ — ,¢‘,
Qa + k)’

which is also an Elliptic Integral of the first class, but has a
different modulus and a different amplitude from those of the
given integral.

The steps of the process are as follows:

From (1) we easily find
s, 8in®2 ¢,
s =1q + K+ 2kcos2¢,

‘whence  VI—Isilg= LT EC0S2
V14K +2kcos2¢,
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Differentiating (1), we get

sec’pdep = ?LH’“’__O_SM déy;

(k+ cos2¢,y
141 +2kcos2¢,
b 1 = H
ut from (1), sec’d et o002 n)
2(1 4k cos2¢,)
h = d
ence ¢ 14+, 42kcos2¢, o
do__ _ 2dg, - 2d¢,
V1—Ksin’¢ V1+K+2kcos2¢, V1+A42k—4ksin’s,
__2 d,
1+k 4k .
1— sin?
\I irrp®
¢=0 when ¢=0,
¢ deé
hence — d
V1= sin’e 1+’~f \/ sin'g
(a+ k)’ '
and F(k, ¢)= = Fku ),
4
where k= 2\/k (4]
1+ x
and sin(2¢; — ¢) = k sin¢.
k, is less than 1 and greater than k; for M < 1 reduces
to 0< (1~ \/I—c)’, which is obviously true, and 2 \/k > k

reduces to 4 > k(1 4+ k)3, which is true, since k is less thnn 1.

™

If ¢ is not greater than 3 and the smallest value of ¢, con-

sistent with the relation sin(2¢,—¢)=~ksingd is taken,
0< ¢ <¢p. Hence (4) is a reduction formula by which we
can raise the modulus and lower the amplitude of our given,
function.
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By applying the formula (4) n times, we get

2 2 2 .
Fk, ¢)= 1+k Tk T4 Tk, O )i
or, since -l_jjc \/_, ete.,
F(k, ¢) =k \[m F(ku, $a)s
where 1
k’—fT!—_‘ and sin(2¢,—¢,.) =k, sing,;.
,—l

If we suppose n in (5) to be indefinitely increased, we shall

have 7}‘:;: [k.]J=1; for if we form the series

=B+ (L =)+ (1 = k) + oo+ (1 =K 4 ooy
we shall have
2Vk,

1—
11—k 14k _(A—-VEY_ 1
1—k, 1—k, 1—kS 1+r 1+%,’

which is always less than unity ; hence the terms in the series
must decrease indefinitely as p is increased and ”h:;: [1—Ek,])=0.

Since, as we have seen above, ¢, continually diminishes as n
increases, but does not reach the value zero, it must have some
limiting value ®. Hence

hmlt
[F(k.’ ¢-)]—F(l d’) -f ‘\/l —_ slll"b

* =logt 2l
_j: secpded = log an[z+§],

and F(k, ¢)=log tan[ +& 2], I% [6]

Formulas [5] and [6] lend themselves very readily to numer-
ical computation.
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181. Formula [4], Art. 180, may be used to decrease the
modulus and increase the amplitude of a given Elliptic Integral.
Interchanging the subscripts, and using (3) Art. 180 instead of
(2) Art. 180, we have

F(k,¢)= ﬂF(k #)»

where =l=Vi-F [1]
1+VIi—® k!‘
and tan(¢; — ¢) = V1 —iFtane.

By repeated application of [1] we get

Fk, ¢)=(1 +7) (1 +%)...(1 + k) EE

where k,= H/;kg{,—% (2]
1+V1=%,,

and tan(¢, — ¢,_1) = V1 — 13, tan¢, ;.

It is easily shown, as in Art. 180, that h_'_mt (k.]=0, and
consequently that limit F(k,, ¢,)= f d¢ = P, where & is the
[}

=
limiting value appronched by ¢ as n is increased.

It ¢= ", we get from [2], ¢y=1m, ¢y=2m, ..py =27
hence K=F<k, -125)=§(1 +k) (1 +k) (1 +5)--.  [3]

Formulas [2] and [3], like formulas [5] and [6] of Art.
180, lend themselves readily to computation.

With a large modulus, it is generally best to use [5] and [6]
of Art. 180; with a small modulus, [2] or [3] of the present
article will generally work more rapidly.

We give in the next article the whole work of computing the

Elliptic Integral F(\/Z ) by each of the two methods, and
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VB _ (V2

of computing K (—) = F( —) by the second method,

2 2’2
employing five-place logarithms.

182. F(’\/‘T?’ i') MzrHOD OF ART. 180.
k=0.70712 " logk =9.84949

1+k=1.70712  log (1 +k) = 0.23226

log Vk = 9.92474
log2 = 0.30103
colog (1 4+ k)=19.76774

log %, = 9.99351

k,=0.98518 log k, = 9.99851
14k =1.98518 log(l + k)= 0.29780

log Vk, = 9.99676
log 2 = 0.30103
colog (1 + k) = 9.70220

logk, = 9.99999
k=1

logk = 9.84949
log sing = 9.84949
log sin (2¢, — ¢) = 9.69898

2 —=30° 0' 8"
2¢,="T5° 0' 3"
¢, =37° 30" 2"

logk, = 9.99351
log sin ¢, = 9.78445

log 8in (2 3 — ;) = 9.77796
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24y — ¢ =36° 51' 8*
2y =T74° 21' 5"

® = ¢, =37° 10' 32"

1}<b+'£=63° 35' 16"

log tan G +49) = 0.30393

log V&, = 9.99676
colog Vk =0.07526

log log tan (i + p) =9.48277

colog p = 0.36222
log F ‘/_25 i’) =9.91701

F(.\Q ’_') = 0.82605
2’4

p=0.48429 is the modulus of the common system of
logarithms.

F<y2—2, Z)- MEeTHOD OF ART. 181.

NI =K =k'=0.70712

1—&' =0.29288 10g (1 — k') = 9.46669
14k =1.70712 colog (1 +&') = 9.76774
k= 0.17157 logh, = 9.23443
1—k, =0.82843 log (1 — ;) = 9.91826
14k = 1.17157 log (1 + k;) = 0.06878
log ,'? = 9.98704

ky'= 0.98520 logk,' =9.99852

1 — k/'= 0.01480 log (1 — k') = 8.17026

14 A/'=1.98520 colog (1 + k') = 9.70220
Ky = 0.00746 logk; = 7.87246
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1—k, =0.99254 log (1 — k) = 9.99675
14 ky=1.00746 log (1 + ;) = 0.00323
log k,'* = 9.99998
k=1 logk,! =9.99999
k=0
logk' = 9.84949

log tan ¢ = 0.00000

log tan (¢, — ¢) = 9.84949
é1— ¢ =285 15 58"
¢ =80° 15' 58"

logh,' = 9.99352

log tan ¢, = 0.76557

log tan (¢ — ¢;) = 0.75909
$r— = 80° 7' 17"
é;=160° 28' 10"
tan (¢; — ¢;) =tang,
@ = ¢y =26, = 320° 46' 20"
1

=d= 40° 5" 48"
] 48

= 144348"
« = 648000"

log (%;“’)" = 5.15942

cologn'' = 4.18842
logr=0.49715

1
= = 9.8449¢
log(23<1>> 84499
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log (1 + k,) = 0.06878
log (1 4 k;) = 0.00328
1
log(—=®)=9.84499
% (23 )

logF(-\/?E, §> =9.91700

F(ﬁ, E) = 0.82605
23

For F(\/?E, g) we have by (3), Art. 181,

log (1 4+ k,) = 0.06878
log (1 + %;) = 0.00323
log= = 0.49715
colog2 = 9.69897

logF(ﬁQ, L’) =0.26818
22
V2 7
V2 7\ _ 8541
. 2) 85

183. Landen’s Transformation can also be applied to the
computation of Elliptic Integrals of the second class, but the
task is a more diflicult one; we shall, however, give a brief
sketch of the method ; and in so doing we shall apply it to a
more general form

. \_ (** a4+ Bsin*¢
G #)=f 2 g [1]
of which E (k, ¢) is a special case.
From Art. 180 we have
A —7Fsn sintﬁ: _l+k0082¢, ,
V144 2kcos2 ¢,
- k 4 cos 24,
VIFH +2kcos2dy

— 2(1+kcos2¢,)
dé 1+ K+ 2kcos2¢.d¢"
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Hence VI =Fsin’¢ +kcosp=V1 4+ + 2k cos 2 ¢,.

@ (k, ¢)= \/—“—%
1 —k*sin'¢

_ a B . 1—(1—Ksin'p)
~£ [\/ﬁﬁm_’d»+k’ VI—"sin'g ]d¢

B

+

- B _ B TiEamy
«l; [\/l—k’sm’d: V! ' sin ¢:]d¢’

and

G (k, 4)—Esing

B
+
(] __ E -

f |;/1 e R (V1—k?sin’¢ + keos¢)]d¢.
Substituting ¢, for ¢, this becomes

. a— gcos 2¢,

@G (k, - g i =2 * k
(*, ¢) ksm¢ j«: V14K 42kcos2¢, dr
-8 + —Esln’
h d
=1 +k~£ e . -
J (lTk)’sm &

Hence G (k, ¢)= B sm ¢ + G,(k,, &)y [2]

where

=2 din(2gi— g)=koing, a=a-f =2 [g]

Formulas [2] and [3] enable us to make our given function
depend upon one of the same form, but having a greater
modulus and a less amplitude. A repeated use of [2], together
with the reductions employed in Art. 180, gives us
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. 3. 3 s 20
< o =Is=o— ‘7‘50"\‘ B.sméy
T . , kK ---k--:
+\‘—:: Zene s +\BETESR amg,
g L= PR &
=3
M g-i‘f;“g"'k,_x
3y 2 T e
and s=tdteteet T Yamn oy,

Just as in Art. 130 &, rapiily approaches 1 as n is increased ;
the Emiting valoe of G,\&,. o) is then

-y Snt
limit G.(k. o) = | %“

= (a4 3) ogtan §+ &\ _g.sing.. [6]
Br Art. 130, 37 and 767

.Y

limit k_\h-ﬂ ogun +°-j_p(k é).

[4] can thus be written

G(k, ¢)=F & ¢)[ —§(l+ e

T
ot ol
+klkt N —hhks-..l‘ l)]

-‘-’[t 2 oy +-2
+E£| sing + umh.’-\/k_k, *4.\/“:]’:’ sin ¢y 4

sing, , —

+ \Ikk. whaa \/kkx--- k.., o *} (7]
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If a=1, and B=—K*, [7] reduces to

E(k, ¢)=F(k, ¢)[l+k(l+ + 2

xkz
gn-1 2
+k1k,...k _,_k,k,...k,_.)]

2?
— k| sin +—em + 8in g 4= oo
[ #+ Tosint ssindy
g1 2" .
+ ———s8indé,_; — ———— 8in ¢,.] 8
N T s ) 8]
where k,=12—+—-2‘—‘— ";c‘, and sin (2¢, — ¢,.1) =k,_18in¢, ;. [9]
‘p-1

By Formulas [8] and [9] an Elliptic Integral of the Second
Class may be computed without difficulty.

184. Formula [2], Art. 183, may be used to decrease the
modulus and increase the amplitude of an Elliptic Integral.
Interchanging the subscripts, we have

G (k, $)= 1;—"‘[01 (K 1) —% sin ¢,];

or, since %: g, (Art. 183 [3]),

1

Gk, ¢)= l—'HLl:G’x (ky, 1) — E sin ¢,‘], [
where
. _1=-V1—%
h—f""\/l = tan(¢—¢)=V1—4k* tang, al—a+é Bl——'

(2]
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E(k ¢)=F(k, ¢>[1 —’g’(l +§+"—2"-=+"—"'"-=+)]

23
Y TR R .- D A
where
= SR a0 = VT ity

[6]
We have seen in Art. 181 that if ¢=’-2', ¢, =271y,

Therefore, for a complete Elliptic Integral of the second
class we have

T\= 7\ 1 _’i' 1 b, kk kyksky o) |
E(k, 2) F(k, 2)[ 2( +2+h hhk [7]
Formulas [5] and [7] are admirably adapted to computation.

We give in the next article the work of computing
1«:(-‘/2—z ’z') by each of the methods just given, and of com-
puting E('?, g) by the second method; using, as far as
possible, the values already employed or obtained in Art. 182.

185. E(g, %) METHOD OF ART. 188,
Here, as we have seen in Art. 182, if we carry the work only
to five decimal places, k3 =1, and our working formula will be

E(k,¢)=F (K, ¢) [1 + k(l - ’%)]

1

- k[sin o+ l__sin ¢ — 2f - sin ¢,]-
vk VEE

X0
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log2 = 0.30103
logk = 9.84949

colog k; = 0.00649

0.15701

log(1+%— “;c_"> =9.48391

1

logF(ﬁ ") 9.91701

9.35092

logk = 9.84949

log sin ¢ = 9.84949

9.69898

log 2 = 0.30108
logVk =9.92474

log sin ¢, = 9.78445

0.01022

log 2* = 0.60206
log Vk = 9.92474
colog VE, = 0.00324

log sin ¢, = 9.78122

0.81126

—k(sin¢+r/2:sin¢,—

INTEGRAL CALCULUS.

[ART. 185.

2k
1

14+%=1.70712

= 1.48558

1+k— gkl‘= 0.27159

1

F(‘{; 4)(1 +k—%) 0.22435

ksing=0.5

2k .
—sin ¢, = 1.0238
G

2%
N

sin ¢y = 2.0477

2 . )
sin¢; | = 0.5239
VEkk,

(Y2 ") (1 +k—%’f) 0.22485

1

V2 x
E( 2 4) 0.74825
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E(\/—f, E) MeTHOD OF ART. 184,

k;=0. Thercfore our formula is

E(k,¢)=F(k, $) [1 - lg(l '*'l;_l +%’)]

+ k( vk, sin ¢, + \/k’k’ sm¢,)
logk, = 9.28448
logk,= 7.87246
colog 4 = 9.39794
6.50488 ’ﬁlz—,"-’ = 0.00082
k
-1=0.08578
2 7

145 o+ "’_1.08610
B Bk
Blfiih kil _,.
2( +84 2,) 0.271525
log 0.728475 = 9.862415 1—%’(1+ ""‘*) 0.728475
V2 7
F(Y2 ™\ = 9.91700
g (g0) = om0
9.770815 F(Y2 ") (0.728475) = 0.60178

logk=9.84949

log Vk, = 9.61722
colog 2 = 9.69897
log sin ¢, = 9.99370

9.15938 kﬁ’

——8in ¢, = 0.14434
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logk = 9.84949

log Vk; = 9.61722
log Vk; = 8.93623
colog4 = 9.39794
log sin ¢y = 9.52592

7.32680 k “2"""sm¢, 0.00212
k (\/’?‘ sin ¢, 4 \/k' sm ¢,> 0.14646

(‘/§ )(o 728475) = 0.60178

E (ﬁ, ’_') =0.74824
2’4 _

E (122, g) METHOD OF ART. 184.

E(k§)=F(A 2)[1__(14. 4k )]

1 —%' (1 + %‘ + -"12—’,‘*) =0.728475  1og0.728475 = 9.862415

logF(‘/2 ’2') 0.26813

‘\/é T\ ‘\/E T\ __
E(TZ, 5) = 1.8507 logE(—2—, é) = 0.13054
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186. An Elliptic Integral of the first or second class, whose
amplitude is greater than :'zr, can be made to depend upon one
whose amplitude is less than ’—2', and upon the corresponding

Complete Elliptic Integral.

We have
_(d6_ (e, (db_ g, (4
F(k,=)=) f j; A ¢—K+ j; vy by [4], Art. 179.
2 3 .
'gi’ —r—y:
In .£A¢ letp=m—y¢;
E]

then d¢p =—dy and A¢= V1 —k*sin’¢p = V1 — k?sin’y = Ay,

and we have 'ﬂ__fﬂ__ eﬂ_ id_qS._K
= = =) 2g= &

Hence F(k, =)= j: 'g= 2K [1]

nw+p

F(k, nr +p) = Z‘i

nwtp

+f§:+fd¢+ +fd"’+ +fA_¢
()7

In % let ¢ =pw +¢; then d¢p =dy, and A¢d = Ay,

e

(p+1)™ [ 2 F 4
and we have i‘é= ﬂ: d_"s=2K.
S 06 4oy Jag
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nw+p

The substitution of y for ¢ — nr infi—i gives us

aT+p

P P
do_ (HW_ (4 pkp).
nrA¢ OAtI’ OA¢

Therefore F(k,nw+p)=2nK+ F(k, p). [2]

In like manner it can be proved that

F (k,nwr—p)=2nK— F (k, p), [3]
E (k, nr+p)=2nE + E (k, p), [4]
E (k, nm —p)=2nE — E (k, p), [5]

where E=E (k, g) is the complete Elliptic Integral of the
second class.

A table giving the values of the Elliptic Integrals of the
first and second classes for values of the amplitude between

0 and 1—2' is, then, a complete table.

Such a table, carried out to ten decimal places, is given by
Legendre in his ¢ Trait¢ des Fonctions Elliptiques.” We give
in the next article a small three-place table.

It must be noted that the first column gives F (0, ¢) and

E (0, ¢), that is, jo‘ ¢d¢>= ¢; and that the last column gives
F(1, ¢) and E (1, ¢), that is, log tan G+%)and sin ¢.

The complete Elliptic Integrals,
K= F(k, ’-’) and E = E(}. 1’),
2 2

are given in the last line of each table.

N
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F(k, ).

k=0 k=01 k=02 k=03 | k=04 k=056 k=06 | k=07 k=08 k=09 k=1,

¢ sin 0°  8in 6° sin 12° sin 18° | sin 24° sin 30° sin 37° | sin 46° sin 53° sin 64° sin 90°
0° 0000 0000 0.000 0.000 0.000 0000 0.000 0000 0000 0000 0.000
] 0087 0087 0087 0.087 0087 0087  0.087 0087 0087 0087 0087
10 0175 0175 0175 0175 0175 0175 0175 0175 0175 0175 0175
15° 0262 0262 0262 0.262 0262 0263 0.263 0263 0264 0264 0265
20 0349 0349 0349 0350 0350 0.351 0.352 0353 0354 0355 0356
25 0436 0436 0437 0438 0439 0440 0441 0443 0445 0448 0451
30° 0524 0524 0525 0526 | 0527 0529  0.532 0536 0539 0544 0549
35 0611 0611 0612 0614 0617 0620 0.624 0630 0636 0644  0.653
40 0698 0699 0700 0.703 0707 0712 0.718 0727 0736 0.748 0763
45° 0785 078 0789  0.792 0798 0804 0814 0826 0839 0858 0881
50 0873 0874 0877 0882 0889 0898 0911 0928 0947 0974 1.011
56 0960  0.961 0965 0972 0.981 0.993 1.010 1.034 1.060 1.09 1154
60° 1.047 1.049 1.054 1.062 1074 109 1112 1.142 1.178 1.233 1317
(] 1.134 1.137 1.143 1.153 1.168 1.187 1215 1.254 1.302 1.377 1.506
70 1.222 1.224 1.232 1.244 1.262 1.285 1.320 1370 1431 1.534 1.735
76° 1.309 1.312 1.321 1.336 1.357 1.385 1.426 1.488 1.566 1.703 2.028
80 1.396 1.400 1410 1.427 1452 1.485 1.534 1.608 1.705 1.885 2436
85 1.484 1.487 1.499 1.519 1.547 1.585 1.643 1.731 1.848 2077 -3.131

K. 90° 1.571 1.575 1.588 1.610 1.643 1.686 1.752 1.854 1993 2275 o
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Addition Formulas.

188. The Elliptic Integrals, F(k, z) and E (k, ), may be
regarded as new functions of z, defined by the aid of definite
integrals ; namely,

) dz
k. =
F(k, 2) j; VA—2)(1-F7)

_( [=F2 .
E(h )= [ i - do.

see Art. 178, [1] and [2].

We have seen how we may compute their values to any
required degree of approximation when %X and « are given.
It remains to study their properties.

We are familiar with other and much simpler functions which
may be defined as definite integrals, and whose most important
properties can be deduced from these definitions.

For example, we may define logz ”J"'d;x, sin-'z as
»__dz , tan~lz asj:' dz , and the theory of these func-
o V1 —af 1+42*

tions may be based upon these definitions. For instance, the

fundamental property of the logarithm is expressed by what is
called the addition formula,

logz 4+ logy = log (2y),

and the whole theory of logarithms may be based on this
property ; and there are addition formulas for the other func-
tions defined above ; namely,

sin~'z + sin~'y =sin"! (zV1 — ¥ + yV1 — &),

tan*‘x+tan-’y=tan-’(”£:"-”)-
1—ay,
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These three important formulas are usually obtained by more
or less elaborate methods involving the theory of the functions
which are the inverse or anti-functions of the logz, the sin~'z,
and the tan~'z, that is, of e, sinz, and tanz; but they may
be obtained without difficulty from the definitions of log z,
sin~'z, and tan-'z, as definite integrals.

Take first logz =f'd—z-
oz
Let us determine y in terms of x, so that

logz + logy = logc, Q)

where ¢ is a given constant.

Since logy =J:'%ly’

if we differentiate (1), we have

dz dy_o
z Yy
or ydz + a2dy = 0. 2

Integrate (2), and we get

fydz+fxdy=0- ®

Simplify the first member of (3) by integration by parts;
xy—fwdy-r-wy —fydm= G
or 2a:y—f(a:dy+ydz)=0.

Reducing by the aid of (2), 22y=C,
or TY= C], (4)
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where C, is an undetermined constant. To determine C,, let
z=1in (4), and we have y = C, when z=1; let =1 in (1),
then logx=£"%=0, logy=1logec, and y=c, when z=1.
Therefore C,=c, and ay=c. Consequently y =£ is the
required value of y, and we have (1)

logz + logg =loge.

We can express this relation more neatly by replacing ¢ by
its value zy, and thus we reach our required addition formula

logz + logy = log (zy). (5]

189. The addition formula for the sin~! can be deduced in
exactly the same way. We wish to determine y so that

sin~'x + sin~!y = sin~'ec. 1)
. *  dx o Y dy
We have sin ‘z=f sin~ly = f .
° NT—& o NT— ¢

Differentiate (1).

dx dy _
i i @
or NI - dz+VI—2 . dy=0,

f\/l—y"-dx+ Vi—a.dy=0C.
Integrate by parts, and

or, reducing by (2),

2Vl —y+yV1i—a*=C. )
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To determine C, we have from (3) y= C when =0, and
dz

0 V1 —2t

2=0. Hence C=c, and zV1 — 3 +y V1 — 2* =¢, and, finally,

from (1) y=c when =0, since sin'z= =0, when

sin~'z 4 gin~'y = sin~! (a:\/l—y"-i-y\/l —a¥). [43

To get an addition formula for the tan-!, a slight device is
required, that of dividing the differential equation correspond-
ing to (2) by 1 — 2?4

As before, let

tan~'z + tan~'y =tanlc, )
a1, (T _dx
where tan z—J; i
-1, 4 dy
and tan y_J; —l+y’
gz L 4y _g
1+2 1+
or QA+ des+ (1 +22) dy=0. (6)

Divide by 1 — 2*s*® and integrate.

1+ 1+ .
1 — 2%y dz+f1—a:’y2 dy=C.

Integrate by parts. We have

1+y 2y
d- 1 _x'_vyg—(l_xgyg)zt(l +x’)dy+xy(l+y,)dx]’

142 2z

R o e POk

[(1+y") dz+ 2y (1 +2) dy],

and
149 LA+ x4y
S p e Rk A e R Rpety
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Hence

z+y flw(lxjyj;?[(l+y’)dz+(l+x’)dy]=0-

Therefore, by (6), 1“+ i’y =C. )

To determine C, we have from (7) y=C when =0, and

0

from (5) y=c when « =0, since tan“x:f I 9% __0 when
() —_

z=0.

Hence C=c, and ZtY¥ —¢
— Yy

and, finally, tan—'z 4 tan~'y = tan~! (l‘”_'*'l) (8]

)

190. To get an addition formula for F(k, z), as before

let F (k, 2)+ F (k, )= F(k, o), 0
= dx
ky, )= ’
where F(k, z) ﬂ\/(l—x’)(l—k’z’)
y dy
d F(k, y)=
- ©0=f e

dz dy

= 2
V(l—x’)(l—k’x’)+V(l—y’)(l—k’y’) @)

or

NA=-9©Q=Fy) -dz+ V(1 —2*) (1 = Ka*) - dy=0. (3)
Divide by 1 — A*z*y* and integrate.

VA=A =¥y V(1 =2%)(1—k2?)
f 1-kzy da+ [ "y =0
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Integrate by parts. We have

a. YA ="(A-—Fy) _ y
1—kzy  (I—kzyyi2FE+y)
—(A+B) (1 +Ry)] dy

V-9 (1 —Fp)
+ 2Ky V=) (I — ) dai 3

d.VA-—a)(1—K2) _
1 -2y a nyy

§[2K(=* +9°)

—(1+ Ko dz
Q+r)Q+ y’)]v(l_z,)(l_m,)

+ 2K 2y V(1 —2) (1 — k'2%) - dy}-
Hence

VAP A7+ yVI = (1 —F)
1 — k2atyt

~ TR R @) — (148 (L 4 Katy)]

B
NA=-2)(1=82*) V(1 —-9)A-Fy)

+2Ry (VA=) (A —Fy)-do

+ VA=) (A —B) - dy)}=C.

Reducing, by the aid of (2) and (3), we have

“\/(l—y’)(l kgyz)'i"y\/(l —a:’)(l—k’z’) C. (4)
1=Kty
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To determine C, from (4) y=C when =0, and from (1)
y=c¢ when x=0. Therefore C=¢, and we get

F(k, z)+ F(k,y)

_ NA=yy I =Fy) +y VI =2") k)
.-F(k, / 1=Ky ’ (5]

our required addition formula.

An addition formula for E (k, ) can be obtained in very
much the same way, but the work is rather complicated, and
it is better to use a method which will be explained later.

’

THE ELLIPTIC FUNCTIONS.

191. We have just seen that there is an analogy between
the Elliptic Integral F(k, ), and the familiar functions logz,
sin~'x, and tan 'z; and we know that the theory of these
functions is ultimately connected with that of their inverse
functions, log~'u or e, sinu, and tanu; and, indeed, that the
latter are so much simpler than the former that it is customary
to regard them as the direct functions, and the logarithm, the
anti-sine, and the anti-tangent as the inverse functions.

For example: the first three addition formulas just obtained
are much simpler when we express them in terms of the direct
functions, and they becowe

log '(u +v)=log 'u - log~1v,

or e+ =e". ¢, (1]
sin(z +v) =sinuV1 —sin’v 4 sinv V1 —sin’u;
or sin (x +v) =sinucosv+ cosusinv, [2]
tanu 4 tanv
tan(u +v) = ———————; 3
(v +v) 1—tanu - tanv’ 8]

and in this form they seem to better deserve the name of
addition formulas.
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In the same way the addition formula for F(k, ) can be
more simply written in terms of the function which we might
naturally represent by F 'u (mod. k); and, as we might
expect, this function has many interesting and important prop-
erties which well deserve investigation.

Since in most of the work which follows we shall generally
employ the same modulus throughout, we shall not take the
trouble to write it except in the few cases where its omission
might give rise to confusion, and then we shall put (mod. k)
after the function, as above with F~'« (mod. k).

192. In Arts. 178 and 179 we have adopted two forms of
notation for an Elliptic Integral of the first class, ¥ (k, ) and

F(ka ¢);

F(k, x)= dz
o \/(l-—x‘)(l—k’x’)
¢ $d
= | e ¢
where z=sing, VI — 2= cos ¢,
and VI =2 =1 —A%sin’¢ = A¢.
If we let u=F(k,x) =F(k, ¢),

we have in Art. 179 called ¢ the amplitude of u, and sind¢,
cos ¢, and A¢ may be called the sine, the cosine, and the delta of
the amplitude of u; and ¢, sing, cos ¢, and A¢ may be written
amu, sinamu, cosam, and A amu, or, more briefly, amu, snu,
cnu, and dnu; and may be read amplitude v, sine amplitude u,
cosine amplitudex, and delta amplitudex. Formulating, we
have
u=F(k,2)=F(k, ¢),

¢ =amu,
x_sin¢_snu, - (1]
V1 —a&f=cos¢ = cnu,

Vi—EZ=a¢=dnuy,
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snu, cnu, dnu, are frigonometric functions of ¢, the ampli-
tude of u, but they may be regarded as new and somewhat
complicated functions of u itself, and from this point of view
they are called Elliptic Functions of u.

amu also is sometimes called an Elliptic Function ; and there
are various allied functions that are sometimes included under
the general title of Elliptic Functions. We shall, however,
restrict the name to snu, cnu, and dnu. They have an analogy
with trigonometric functions, and have a theory which closely
resembles that of trigonometric functions, and which we shall
proceed to develop. It must, however, be kept in mind that
the independent variable u is not an angle, as in the case
of the trigonometric functions. ' -

Of course, with our notation, u = F (k, z) = sn":r (mod &),
oru=F(k, ¢) =am¢ (mod k).

The fundamental formulas connecting the Elliptic Functions
of a single quantity follow immediately from the definitions
(1], and are

sn®u +cnfu=1, [2]
do’u +Meglu=1, (8]
"_%’.:_“ — dnu, [4]
dﬂ'—‘:cnu.dnu, ' [5]
du
dent _ _ gnu.dn u, [6]
du
m:—k’snu.cnu, [71]
du

The only one of this set which needs any explanation is [4].

é
We have u—j d¢

———
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damu
h d _—‘E du
ence () o’
damu
and, finally, du =dnu
. 4dg _ (¢d —_ (e,
Stnce J; __f A(—¢) o Ag’
we see that
am(— «)=— amu,
sn (—u) =—snu,

(8]

en (—u) =cnu,
dn (—u) =dnu,

That is, snu is an odd function of u, and cnu and dnu are
even functions of .

" . od_¢. —
Since j; ag— 0,
we have
am(0)=0,
sn(0) =0,
. 9

cn(0)*=1, (o]
dn(0) =1,

193. Our addition formula for the sine amplitude flows
immediately from [5], Art. 190. Let uw= F(k,x) and
v=F(k,y), and take the sine amplitude of each member of
[5], Art. 190; we get

snx.cnv.dnv+4cnu.snv.dnu
1 —&%.80%u.sn?v

sn(u+v) =

If now we replace v by — v, and simplify by [8], Art. 192,
wo have
snu.cnv.dnv—cnu.sn?v.dnu
1 —A%. sn’u.sn’v

sn (v —9v) = ,

and the two formulas can be combined if we use the sign =+ ;
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snu.cnv.dnv +cnu.snv.dnu
(1]

oo (uv) = 1 —k%.snu.snv

From [1], with the aid of [2] and [8], Art. 192, we can get,
after a rather elaborate reduction, the addition formulas for
cn and dn.

_cnu.cnvFsnu.snv.dnu.dny
on (u £v) = 1 —%%. sn’u.sn®y (2]

__dnu.dnvx k*.snu.snv.cnu.cnv

dn (u £v) = 1 —%*.sn’u.sntv 33
From [1], [2], and [3] a large number of formulas can be

readily obtained. We give only those for sn; there are

similar ones for cn and dn.

2snu.cnv.dnv
= - (4]

sn (u + v) 4 sn (z —v) T 1—=k.sn’u.sn%

_ 2cnu.snv.dnu [5]

sn (v +v) —sn (x —v) T 1—K.sn'u.en%

sn (u +v) . sn (u —v) = snu—snly [6]

T 1—12.sn%u-sn'

*v + sn'u . dn?
Ly memo =ERERLES )

2 2 2 2
14K (uto).on(u—v) =ILEEEIUGD ()

(cnv +snu.dnv)? [9]

[1+sn(u+v)][14sn(u—v)]= 1 —k*.sn’u.sn%v

From [2] and [3] comes the useful formula

cn(u+v)=cnu.cnv—snu.snv.dn (x4 v). [10]
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194. If in formulas [1], [2], and [3] of Art. 193 we let
v=1u, we get the following formulas for sn2u, cn2u, and

dn2u:

2snu.cnu.dnu
e T (]
2, _ and 2 _ 2 ksnt
oy = S0 snu.dnu=l 28n’*u 4 k*sn'u 2
cosu 1 — k%sn'u 1 —K’sn‘u (2]

2oy — 2 2 — 2 2 ont
dn 2u = 307 K .sn'u.cn’u _ 1 —2Kk*sn’u 4 A*sn'u [3]

1 — k*sn*u 1 —isn'u

From these come readily
2sn’u . dn’u
T —Fen'n [4]

1—cn2u=
1—Isn'u’

2cnlu [5]

1 U= —"" — _
+enzu 1 —i2sn'v’

2k*sn®u . cnfu
1 —dn2u=m7 [6]

2dn’u -
(7]

14dn2y=—"-"——_.
+dnzu 1 — k*sn'u

195. Replacing u by g, and dividing [4] by [7] and [6]
by [5], Art. 194, we have

s _ 1—cnu _ 1—dnu
o 2 14dnu k’(l+cnu)’ (1)
o4 _dnu+4cnu  —k'*4+Kcnu+dnu
2= = 2
2 14 dnw k(1 4+ cnu) (2]
s% _K*+dnu+ Kenn _ (enu+dnw)
an’g 1+dow (I+enw) ’ (3]

where ¥'*=1—%°, and is the square of the complementary
modulus.
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From [1], [2], and [3], we can get without difficulty the set

2% _ dnu —cnu 4
i k'?+dnu —Kenv’ (4]

2% _ _ K'*(1+4cnu) 5
cn2 k'*+dnu—Ienw’ (5]
dnt¥ = __¥*’(1 4+dnw) (6]

2 k'?4 dnw—Kenu

Numerous additional formulas can be obtained by the exer-
cise of a little ingenuity, but we have given the most useful and
important ones, and they form a set as complete as the usual
collections of trigonometric formulas.

Periodicity of the Elliptic Fynctions,
196. We have seen (Art. 186, [2]) that
Fk,nmw+p)=2nK+ F(k,p), [1]

where K is the complete Elliptic Integral of the first class.
Let w= F(k, p), and take the amplitude of each member of
[1]; we get
am(u+2nK)=nr+amu; [2]
or, replacing » by 2,

am(u+4nK)=2nr+ amu; 3]

whence
sn(u+4nK)=snu,

cn(u+4nK)=cnu, }; (4]
dn(u+4n K)=dnu, )
and snu, cnu, dnu are periodic functions, and have the real

period 4 K. dnu actually has the smaller period 2 K, as may
be seen by taking the delta of both members of [2].
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v

Since the amplitude of K is g, we have

snk =1,
enkK =0, 3,
dn K=k,

[ART. 196.

(5]

and our addition formulas [1], [2], [8], Art. 193, give us

readily
sn(u+K) = :;2?‘,
8 F
R Tt
kl
dn (u + K) = m,

sn(u+2K)=—snu,
en(u+2K)=—cnu,
dn(u+2K)= dnu,

SK)=_—B%
sn(u+3K) dnu’

. k'snu
en(u+3K)= dnw’ L,
do(u+8K)= -F—
o(u+ )= dov’ J

sn(v+4K)=snu,
en(u+4K)=cnu, ;,
dn(u+4K)=dnu,

a confirmation of [4].

(6]

(7]

(8]

(9]
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197. It is easy to get formulas for the sn, cn, and dn of an
imaginary variable, v — 1, by the aid of a transformation due
to Jacobi.

Let v=F(k, ¢)_f d¢ (1)

so that ¢ =amv, sing =snv, and cos¢p =cnv. In (1), re-
place ¢ by ¢, ¢ and ¢ being connected by the relation

sing =V —1.tany, (2)
whence cos ¢ = secy, ®)
Ap = V1 =K sin*p = V1 4 K tan®y, 4)

and dé=V —1.secy.dy.

Since ¢ and ¢ equal zero together,

_f°d¢ \/__—lf" secy
0 /14 K tan’y

e
—-1) —— =V —=1.F\¢).
j‘: \/l—k"sin’up (> 9)

If now we let v = F (%', ¢),
we have v=uV-—1 ©)
Hence, since y =amu (modk'), we have from (2), (3),

and (4),

snv (modk) = V=1 jenu (mod k')
cnu (modk')’

1
cnu (rod k')’

dn ugmodk’!
dov (modk) = cnu (modk') ’

cnv (modk) =

or,asv=uvV—1,

e
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Since the amplitude of K is g, we have

snK = 1,
enK =0, 3,
dn K=k,

sn(u+K) = ‘(;“T';,
A

en(u+ K) =—Ldf—lnu",
> k'

dn(u+ K) = ana

sn(u+2K)=—snu,
en(u+2K)=—cnu,
dn(u42K)= dnu,

cnu

SK)=—
sn(u+31L) anw
. k'snu
JK)= ——i7
en(u+3K) 0w
do(u+3K K
p(u+3i)= g

sn(v+4K)=snu,
en(u+4K)=cnu, 3,
dn(u+4K)=dnu,

& oconfirmation of [4].

[ArT. 196.

(5]

and our addition formulas [1], [2], [8], Art. 193, give us

(€]

(7]

(8]

[9]
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197. It is easy to get_formulns for the sn, cn, and dn of an
imaginary variable, v/ — 1, by the aid of a transformation due
to Jacobi.

¢d¢
IJ t =F k 3 Pt 1
e v=F (k9= 1%, )
so that ¢ =amw, sing =snv, and cosp=cnv. In (1), re-
place ¢ by ¢, ¢ and ¢ being connected by the relation

sing =+ —1.tany, 2)
whence cos ¢ = secy, ®)
A¢p = V1 —Esin*p = V1 4 K* tan’y, “)

and dé =V —1.secy.dy.

Since y and ¢ equal zero together,

_ éd—¢=\/—_l ¥ secy
Y £A¢ S Vit Ftan'y

“VII(— ¥ V=i R, y).
f«/m 9

If now we let u = F (%', y),
we have v=uVvV—1. )

Hence, since ¢ =amu (mod%'), we have from (2), (3),

and (4),
k) = _—lsnu(modk’z
snv (modk) = vV onu (modk')’

1
cnu (modk')’

dnv (mod k) = dnu (modk’) ,

cnu (modk') '

cnv (modk) =

or,a8v=uvV—1,
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N

iy /3 8nu (modk')
souV —1 (modk) =V 1cn“(modk,),

‘ 1
oV —1 (modk) = cm,

dnu v —1 (modk) = ::—‘!%-((%,%)_’ _J

(6]

Y
.

It is interesting to note that if w is replaced in (6) by

uV —1, the formulas reduce to

sn(—u) =—snu,

en (—n) =cnu,

dn(—n)=dnu,
and are still true. Consequently, in (6), « may be either a
real or a pure imaginary.

w : 4

Let Ay (T Ay _ g
© 3y (modk) b Vi_teemty

Then, by Art. 196, 4K is a period for snu(modk').
env (modA'), and dnwu(modk').
Hence
sn(uN =14+ 40 K'\=1) = snuv—= 1,
en(uV T4 4n KV D=cnuv—T1,
dn (w V’:l--i- 4 K’ \/ —:i) =dnnvvV—1 H
or, replacing uv/ —1 by r,
sn(v+4nK'VT1) =snr,
en(r4-4n K’ ‘\/‘:l-) =cnv, s [7] .
dn (v +4n A"’ Vv=1)=dnv,
and 4 K'v—1 is a period for sn, cn, and dn.
We see, then, that our Elliptic Functions, like Trigonometric

Functions, have a real period, and, like Exponential Functions,
bave a pure imaginary period. They are, then, what may be called
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As a matter of fact no complete set of tables for the Elliptic
Functions has been published, and their values are usually ob-
tained indirectly from Legendre’s Tables of Elliptic Integrals
(r. Arts. 186, 187), unless especial accuracy is required, in
which case they must be computed by methods which we have
not space to give.

198, The Elliptic Integral of the second class E (k, ¢) can
be expressed in terms of Elliptic Functions, and for some
purposes there is a decided advantage in the new form.

[
Wo have E(k, ¢)= j; Ad.do.

lot w= F(k, ¢), then ¢ =amu, and E (k, ¢) may be written
E (k, amu), or, more simply, E (amu), if the modulus can be
omitted without danger of confusion.

Then E (amu) =J "(ni;) w.damu;
0
or, since by (4), Art. 192,

damu=dnu.du,

E (amu) =Jo“dn'-'u .du. 1]

A an example of the usefulness of the form just given in
[1]y we will employ it in getting an addition formula for
Elliptic Integrals of the second class.

E (amu) + I (amv)
= J wdn’ w.du 4 r'dn’»v .dv
0 0

=j“dn'z . dz +J“du’z .dz
0 (]
"o vy
=f dn?z . dz +j dn?z.dz —
[ (]

=E[am (v 4+ v)] +j:dn’z .dz —J‘:l't;"'z . dz.

-t
f dn?z. dz
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Replacing z by u + 2, and remembering that u and v are given

constants,
u+e v
f dntz . dz =£ dn? (u + z) dz,
and :
E(amu)+ E (amv) =

E[am(u+v)] —j;’[dn’ (v + 2) —dn’z] d2. (2)
dn’ (u +2) —dn*z = [dn (u + 2) + doz][dn (4 + 2) — dnz]. (3)

We can obtain from [3], Art. 193, the following formulas
analogous to [4] and [5], Art. 193,

2dou.dnv
1 —ifsn’u . sn®v’

dn(u+v)+dn(u—v)= 4)

2k%snu .snv.cnw.cnv
- (9)

don(x4+v)—dn(u—v)=— 1 — k*sn?u. sn’v

If in (4) and (5) we let u4+v=u+2,and ¥ —v=2, and
substitute the results in (3), we get
dn? (u 4 2) — dn’z

4k’sn(g+z>cn(g+z)dn(§+z>sngcn'—2‘dn'§‘.
T 9,

l_l - k’sn’:—; sn? (g + z)]’

and
f[dn’ (u 4+ 2) —dn?*2z]dz
2k’sn('f+z)cn<'—‘+z) dn('—‘+z)dz
=—2sn%cn%dn® 2 2 2
2 2 2 [l -k sn"g sn’(g + z)]

2sn¥cen®dn¥
2 2 2

1
sn’g 1-5 sn"t—;’sn'-(; —{-z)

-
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since — 2k2 sn’g'sn (t; + z) cn (;+ z) dn (g + z>dz is the differ-

ential of 1— 2 sn’f—: sn’ ('_; + z).

f'[dn’ (u+2z) — an*z)dz
(]
2entent dn?
2 2 2

1 _ 1
su"'g 1—22 sn'g sn’(g + v) 1 —i%sn' §j|

k""lsngcu'—;dng sn’<§+v) —-sn’g

1— k’sn‘g 1—a2 sn’g sn’(ﬁ + v)

=—k’.snu.snv.sn(u+v),

by (1), Art. 194, and [6], Art. 193.
Hence by (2),

E(amu) 4+ E (amv) = E [am(u + v)]+ k*snu.snv.sn(u+ »),
(6]

our required addition formula.

APPLICATIONS.
Rectification of the Lemniscate.

199. From the polar equation of the Lemniscate, 7*=a?® cos 24,
referred to its centre as origin and its axis as axis, we get as
the length of the arc, measured from the vertex to any point,
P, whose coordinates are r and 6.

) ° dg
0 /cos20 ~£\/1—2sin"0 [ )

8=a
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and for the arc of the quadrant of the Lemniscate, that is, the
arc from vertex to centre,

-

1Y) do
8§,=« —_— P]
! “’ V1—2sin% (2]

These differ from Elliptic Integrals of the first class only in
that the coefficient of sin’@ is greater than unity, and they may
be reduced to the standard form by a simple device.

Introduce in [1] ¢ in place of 6, ¢ and 6 being connected by
the relation sin’?¢ = 2 sin%.

Then we have V1—2sin*d = cos b,

and dé = \/_Z _cos¢dd
2 V1-3sin's
a a\/2 V2 3
Hence s= f = i sm"‘¢ 2 ( , ) (3]
a\/Z a\/2 V2 x 4
and f Vi=%sin’¢ é sm2 2 ( 2’2/ 4l

The auxiliary angle ¢ is very easily counstructed when the
point P of the Lemniscate is given. We have r=a+/cos 20,
and we have seen that \/cos 20 = cos¢; hence r=acos¢. If,
then, on a as a diameter we describe
a semi-circumference, and with the
centre O of the Lemniscate as a
centre, and with a radius equal to 7,
we describe an arc, and join with O
the point @ where this arc intersects
the semi-circumference, the angle made by OQ with a is equal
to ¢. For 0Q =acos A0Q and OP = a~/cos 2.
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ExaMPLES.

(1) Find the numerical value of f‘ __dé
° \/1—43sin’¢
Ans. 0.843.
L]
(2) Reduce f 9% Elliptic Integral of the
Jo \/T—nsin*¢
first class, when n > 1.

Ans. i; *L_____ where sin’ ¢= n sin’¢.
Vao Jl - -7-1-‘ sin®y

(3) The half-axis of a Lemniscate is 2. What is the length
of the arc of a quadrant? of the arc from the vertex to the
point whose polar angle is 30°? Ans. 2.622; 1.168.

In the inverse problem of cutting off an arc of given
length the Elliptic Functions are of service. As an interesting
example, let us find the point which bisects the quadrantal arc
of the Lemniscate.

Here s = a2 3 F(V2 T),
2 2°2
and we wish to find ¢ and then 6.
Let u=F 1/?, ™); we nced am~>.
2°2 2

amu=g, snu=1, cnu=0, and dntt:%-

By [1] and [2], Art. 195,

wilzet oo dntan
nw nuw
Therefore,
sn? ¥
2 u 1—cnu 1
—_——tp e ==
ot 2 dnu-4cnu /2 V2.

2 2
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If, then, the required amplitude is ¢,

tan’¢ = ‘\/_2_,
and tang = V2.

Since sin’¢ = 2sin?d, we can compute 4 without difficulty,
and so get our required point. If, however, a construction will
suffice, a very simple one gives the point.

Erect at 4 a perpendicular
whose length is & mean pro-
portional between a and a V2.
The angle subtended at O by ,
this perpendicular is ¢, and
the corresponding point, P, is
found by the method described O
on page 255.

Rectification of the Ellipse.

200. We have seen in Art. 177 that the length of an arc
of an Ellipse measured from the end of the minor axis is

* lg? — ea?
8=£ T . dz. [1]

If we let x=asing, [1] becomes
‘¢ —_
s=a \/1—e231n’¢.d¢=aE(e,¢), [2]
0

e, the modulus of the Elliptic Integral, being the eccentricity
of the Ellipse. If z=a, ¢ = ’é’ and the length of the Elliptic
quadrant is .

s,=a 2\/1—e’sin’¢.d¢=aE(e,’§')- (3]
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The length of an arc of the Elliptic quadrant. not measured
from the extremity of the minor axis, can of course be ex-
pressed as the difference between two Elliptic Integrals of the
second class.

The amplitnde ¢. corresponding to a given point P, of the
Ellipse. is easily constructed as follows: On the major axis
as diameter describe a circumference;
extend the ordinate of P until it meets
the circumference. and join the point of
intersection with the centre of the ellipse.
The angle the joining line makes with
the minor axis is seen to be the required
amplitude ¢. If ¢ is given, P may be
found by reversing the order of the steps
of the construction.

EXAMPLES.

The equation of an ellipse is {‘: +"§ =1, required the length
’ A

of the quadrantal arc: of the arc whose extremities have the
abscissas 2 and 22, Anze 3.4 0.944.
(2) Find the abscissa of the end of the unit are measured
from the extremity of the minor axis in the ellipse :156-*-%: 1:

of the point which bisects the arc of the quadrant.
Ans. 0.996: 2,57,

201. By the aid of the addition formula

E(amu)+ E(am»)=E [am (i + )] + A snusnvsa(n 4 v)
([6]. Art. 198)

it is always possible to find an arc of an cllipse differing from
the sum of two given arcs by an expression which is algebraic
in terms of the abscissas of the extremities of the three arcs.
This will be clearer if we modify slightly the form of our addi-
tion formuia.
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Let é=amu, yYy=amv, andoc=am(x+v).
Then the formula given above becomes
E(k, ¢)+ E(k,y)= E(k, o)+ K*sin¢ sin y sino, [1]
where ¢, ¥, and o are three angles connected by the relation

coso = co8 ¢ cosy — sinp siny A, [2]
by [10], Art. 193.

If we multiply [1] by a and take k equal to e, we get
2
aE (e, ¢)+ aE (e, )= aFE (e, 0)+a%x1-¢:-3’;,

if 2, 2, and x; are the abscissas of the points whose amplitudes
are ¢, ¥, and o.

The most interesting case is when o-=’§', in which case

aE(e, o) is the arc of a quadrant. [2] then reduces to

0 = cos ¢ cosy —sin ¢ siny V1—ét,
b . .
or — 8in ¢ siny = cos ¢ cosy,
a

or tang tany = %, 3]
and we get from [1]

aE (e, ¢) —[aE (e, ’2—'>—- aE (e, ¢)] =ae'sing siny. [4]

If, then, any point, P, is given, [3] will enable us to get
the amplitude of a second point, @, and B
thus to find @, Q and P being so re- P
lated that the arc BP, minus the arc AQ,
shall be equal to a quantity which is
proportional to the product of the ab-
scissas of » and Q. 4 4

L



260 INTEGRAL CALCULUS. [ART. 202.

For the special case where ¢ and ¢ are equal we have from

(3], tang = \/%
and from [4],
. a'e’
BP — AP = ae*sin’¢p = —— = a—>.
a+bd

This point, which divides the quadrant into two arcs whose
difference is equal to the difference between the semi-axes, has
a number of curious properties, and is known as Fagnani’s
point.

ExaMPLEs.

(1) Show that the distance of the normal at Fagnani’s point,
from the centre of the ellipse, is equal to a — b.

(2) Show that the angle between the normals at P and @ in
the figure is equal to ¢ — ¢ ; that the normals are equidistant
from O; that this distance is BP — AQ.

Rectification of the Hyperbola.

202. If the arc of the Hyperbola is measured from the
vertex to any given point, P, whose codrdinates are z and y,
its length is easily found to be

G T
o= A dy [1]
o\ "2 )
b
a’e’ g!
or '—f' fiﬂ.\d [2]
= A 1+?_,_’ / .'h
b!

if e is the eccentricity of the Hyperbola. Let

%;y= tan ¢,
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and [2] becomes

_v f sec’¢ d¢é
N1 - Jein's

sm’
hence 8= b’ ¢_sec’pdp _ b (M¢sec’sd (3]
o VI—Kein’¢ aeJo Ag
if k=l
e
Now L_1=F 1_ 1  1-—FKsin'¢—Iecos'¢
Ap 1—K A 1-—-F Ad
=_1 [A¢_k’°°8’f];
1—& A
0.1 sdg
and 2= l—k’[f sectp Apdp — k’f ]
b 1

=" r_—kx[ Sfsec'd apdp—RF , ¢)]-

If we integrate by parts,

fsec’¢A4>d¢ tan¢A¢+k’f °"‘¢d¢,

but JrLLL . S
Ad A¢

amd K| “‘A“:’ dé = F(k, ¢)— E (k, $).

Hence

=Lt )~ e [E (k) — tan g Ag].

ae (l ae(1 — %)
/s

But 1—-K=
" ae
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therefore 8= %F (k, ¢) —aeE (k, ¢) + aetan¢ A¢p,
=Yrl ) 1

or s_aeF(e, ¢) aeE (e,¢)+aetan¢A¢. [4]

The angle ¢ corresponding to a given point P is easily con-

structed. We have only to erect a perpendicular to the trans-
. . b U . .

verse axis at a distance — = — from the origin; that is

ae LT rigin ; )
at a distance from the centre equal to the projection of b on
the asymptote, and to join the projection of P on this line with
the centre. The angle made by the joining line with the trans-
verse axis is ¢, for its tangent is clearly +

Ve

ExaMpLEs.
(1) Find the length of the arc of the hyperbola ir—:; - 3{;: 1,

measured from the vertex to the point whose ordinate is 2.
Ans. 2.194.

(2) Show that ae tan¢ A¢ is the distance from the centre to
the normal at P.

(3) Show that the limiting value approached by the difference
between the arc and the portion of the asymptote cut off by a
perpendicular upon it from P, as I’ recedes indefinitely from
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e'2) ae \e'2
ferred to as the ditference between the length of the infinite arc
of the hyperbola and the length of the asymptote.
Show that in example (1) this difference is equal to 2.808.

2
the origin, is aeE (1, 3')— 2-F(1 ’—'). This is generally re-

The Pendulum.

203. We have seen in Art. 176 that if a pendulum starts
from rest at a point of its arc whose distance above the lowest
point is ,, the time required in rising from the lowest point to
a point whose distance above the lowest point is y, is

N O N S (58 1
N e AL CT N o

where & =\l o and sin¢ =4/¥.
\

2d’

In the figure let A be the lowest point of the arc, B the

highest point reached by the pendulum, and P the point
reached at the expiration of the time ¢t. Call 40B a, and
AOP 6.

Then :—:‘3 =1—cosa, and \% = V4 (1 —cosa)= siu‘:: =k.
Consequently the modulus of the Elliptic Integral in [1] is
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the sine of one-foarth the angle through which the pendulum
swings.

Y—1—cosb.
a
o - 4
and \57.—‘-*(‘ cosf) =sin,
I sin -
o 2
and Dln¢=\1=\-_(_'=_2,
yo yg -

and therefore the sine of the amplitude of the Elliptic Integral
in [1] is easily computed when the angle through which the
pendulum has risen is given. When 6=a, sing =1, and
¢=;; 8o that the time of a half-oscillation is \F; I"(sing, ;),
a confirmation of [7]. Art. 176. The construction indicated

in the figure gives the angle ¢, corresponding to any given are
AP. For

L —1—cos40'Q,
3%

and \[—’_/- =Vi(1 = cos A0'Q)= sinAg’Q =8inACQ.
Mo
Therefore ACQ = ¢.
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It is very easy to express the angle § in terms of &.

We have t= -\l‘f F(sin‘f, qs) ;
g 2
hence t\le = F(sin'f, qS),
a 2

¢=am (t Jg),
sin¢ = sn (t\/g),
in® = sin® g AW
and sin 7= sm2sn (t J a) (mod sin 2) :
then cos g =dn (t Jg) (mod sin ;),
and sinf =2 sin% sn (t\/%) dn (t\[g) (mod sing)-

EXAMPLES.

(1) A pendulum swings through an angle of 180°; required
the time of oscillation. Ans. 3.708 \ﬁ,
9

(2) Compare the times required by the pendulum in Ex. (1)
to descend through the first 30°, the second 30°, and the third
30° of its arc respectively.

Ans. 1.028 \]‘!; 0.446 \/‘!; 0.380 \/‘_‘-
g g g

(3) The time of vibration of a pendulum swinging in an arc
of 72° is observed to be 2 seconds; how long does it take it to
fall through an arc of 5°, beginning at a point 20° from the
highest point of the arc of swing? Ans. 0.095 seconds.
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(4) A pendulum for which J‘—I has been determined, and is

equal to 4, vibrates through an arc of 180°; through what arc
does it rise in the first half-second after it has passed its lowest
point? in the first § of a second? Ans. 69°; 20° 6'.

(5) It has been shown in Art. 176 that if y,>2a the
pendulum will make complete revolutions, and that ‘the time
required to pass from the lowest point to any point whose
distance above the lowest point is y, is

1= ¥ a_q [Zrwe),
a\igyof Vi—®sit¢ N\N9¥% *, ¢)

%a

d si =Jl.
” and sin¢ a

Show that in this case ¢ = Q, and that sing=sn i\ ’% -
2 2 aV 2

where k=

Note.—In working with a pendulum it is often about as
easy to compute F (k, ¢) by developing by the binomial
theorem and integrating two or three terms, as to use a table
of Elliptic Integrals.

We have F(k, ¢) =‘£¢\_/E%ﬁ’

1
-2

(1 —Asin’¢) =1 +u}k’sm”¢+ k‘sm‘¢+

and F(k, ¢)_f \/r_(llti—sﬁ'—¢+?;(¢—sin¢cos¢)

3 prein? 9 14 ( — si
321| sm¢cos¢+64 (¢ — 8in ¢ cos ¢)
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CHAPTER XVII.
INTRODUCTION TO THE THEORY OF FUNCTIONS.

204. A function having but a single value for any given
value, real or imaginary, of the variable is called a single-valued
function. Rational Algebraic Functions, Exponential Func-
tions, the direct Trigonometric Functions, and the Elliptic
Functions are single-valued.

A function which has in general two or more values for any
given value of the variable is called a multiple-valued function.
Irrational Algebraic Functions, Logarithmic Functions, the
inverse or anti-Trigonometric Functions, and the Elliptic In-
tegrals, are multiple-valued.

205. In Chapter II. we have explained the customary graph-
ical method of representing an imaginary by the position of a
point in a plane, the rectangular codrdinates of the point being
the real term and the real coefficient of the pure imaginary term
of the imaginary in question.

In the ordinary treatment of the Theory of Functions this
method of representation is of the greatest service, and enables
us to bring the study of functions of imaginary variables within
the province of Pure Geometry, and to give it great definiteness
and precision.

For the sake of brevity we shall in future use the symbol ¢
for V=1 and cis¢ for cos¢ + V—1sing, so that we shall
write our typical imaginary as z 4 yi or as rcis¢, instead of
using the longer forms z 4 y+/—1, and r (cos ¢ + vV —1sin¢).

We shall also use the name complex quantity for an imaginary
of the typical form when it is necessary to distinguish it from
& pure imaginary.
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206. A complex variable z =2 + yi is said to vary continu-

ously when it varies in such a manner that the path traced by
the point (z,y) representing it is a continuous line.

8

(1)

e
(_(9_/ (3

Thus if 2 changes from the value a to the value 8, so that
the point representing it traces any of the four lines in the
figure, z varies continuously.

It will be seen that a variable can pass from the first to the
second of two given values, real or imaginary, by any one of
an infinite number of different paths without discontinuity if the
variable in question is not restricted to real values; while a real
variable can change continuously from one given value to another
in but one way, since the point representing it is confined in its
motion to the axis of reals.

207. A single-valued function w of a complex variable 2 is
called a continuous function if the point representing it traces
a continuous path whenever the point representing z traces a
continuous path.

A multiple-valued function of z is continuous if each of the n
points representing values corresponding to a value of z traces
a continuous path whenever z traces a continuous path. These
n paths are in general distinct, but two or more of them may
intersect, a point of intersection corresponding to a value of z
for which two or more of the n values of w, usually distinct,
happen to coincide. Such a value of z is sometimes called a
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critical value, and the consideration of critical values plays an
important part in the Theory of Functions.

In studying a multiple-valued function we may confine our
attention to any one of its » values, and except for the possible
presence of critical points this value may be treated just as we
treat a single-valued function.

In representing graphically the changes produced in a fanc-
tion w by changing the variable z on which it depends, it is
customary to avoid confusion by using separate sets of axes for
w and 2.

208. If we use the word function in its widest sense,
w=u + vi will be a function of a complex variable z=z + yi,
if v and v are any given functions of z and y. For example,

zi, 6y, 2+ w—yi, 2 —y'+2ayi, S—LTZ
Vet +4
may all be regarded as functions of 2.

‘We have seen in Chapter II., Arts. 36—42, that with this defi-
nition of function the derivative with respect to z of a function
of w is in general indeterminate; but that there are various
functions of z, for instance, 2*, logz, €*, sinz, where the deriva-
tive is not indeterminate. We are now ready to investigate
more in detail the general question of the existence of a deter-
minate derivative of a function of a complex variable.

Let w=u+4 vi be a function of z; u and v, which are real,
being functions of « and y.

Starting with the value 2,= 2y + y,? of 2z and the correspond-
ing value w, =1, + v,i of w, let us change z by giving to =
increment Az without changing y.

y

2 a2
Y%

Let A,u and A,v be the corresponding increments of u and
v; and 2, and w, the new values of z and w.
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We have =2+ Az, wy=w,+ A u+1A,v.

w,—w, A, u  tAw
Then 1 0=z =,
2 — 2, Ax Az

and the derivative of w with respect to z under the given cir-
cumstances is

limit [ w;, — w, R
AziO[ ! °]=D,u+zD,'v. [1]

21 —2

If, however, starting with the same value 2, of z, we change
z by giving y the increment Ay without changing x, we have

n =2+ Y+ AY)i=2+ {3y,
wy =+ A u 4 (v + A, 0)i=wy+ A6 4 1A,

w—w,  Au AW
2, — 2, Ay Ay

and

limit [, — .
Azéo[ : '9]’—‘ Dyv —iD,u, (2]

21—

and this is the derivative of w with respect to z when we change
» and do not change x.

Comparing [1] with [2], we see that if we start with a given
value of z, and change 2z in the two different ways just con-
sidered, the limits of the ratios of the corresponding changes in
w to the changes in z need not be the same. Indeed, the two
values for d—l"- given in [1] and [2] will not be the same unless

dz
w=u -+ vt is such a function of 2 =2+ i that

Du=Dy and Du=—D,r. [3]

. %
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‘We shall now show that if w is such a function of z that
limit [Aw

equations [3] are satisfied, Az=0 —] will be the same if we

Az

start with a given value 2, of 2z, no mattter in what manner 2
may change; that is, no matter in what direction the point
representing z may be supposed to move; or, in other words,

. limit [Ay
no matter what may be the value of Az=0 [Aw .

We have in general, since w is a function of the two variables
z and y,
Aw=(D,u +iD,v) Ax + (D,u+tD,v) Ay + ¢,

where ¢ is an infinitesimal of higher order than Az or Ay.
(L., Art. 198.)

AZ=A$+Z.Ay.
Hence A__w___D,u.Aa:-{-iD,v.Ay+iI?,v.Ax+D,u.Ay+¢
Az Az 4+ tAy
. Ay | . Ay €
D, D,v.-— 41D 14—
_ w4+ tDv Aa:+l ,v+D,qu+Az
= 3y ’
1
. tiae
d limit [Aw] _ dw
an Az=0| Az | dz

o limit [Ay] o limit [A
D,u+iD,v. Axi_o[a]+1(D,'v—zD,u.Az&O[ZZ

- . limit [ Ay ’
1+ ‘Axéo[a] [4]

a value involving Al;“_litb [:%1], and therefore dependent upon
=0| Az

the direction in which z is made to move.
If, however, [3] is satisfied, [4] reduces to
dw .
5= Dz ‘Ds ) 5
= u+41D,v (5]

o e - limit [ Ay
and the derivative of w is independent of Az=0 [Ax]
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A function which satisfies equations [3], and which, there-
fore, has a derivative whose value depends only upon the value
of the independent variable, and not upon the direction in which
the point representing the variable is supposed to move, is called
by some writers a monogenic function, by others a function which
has a derinative; still others refuse to dignify with the name of
function any other than monogenic functions.

209. Any function involving z as a whole, that is, any func-
tion which can be formed by performing an operation or a
series of operations upon z as a whole, without introducing z
and y except as they occur in z, is a monogenic function of z.

For if w=fz=f(x+yi),
where fz can be formed by operating upon z as a whole,
Dw=f"2, and Dyw=if"z;
therefore tD,w=D,w, or iD,(u+4vi)=D,(u+vi);
whence D,u= D,v, and D,u=—D,v;

and [3], Art. 208, is satisfied. Consequently « is monogenic.
This accounts for the results of Arts. 38—42.
If w is a multiple-valued function of z, there may be several

different values of %z—w, corresponding to the same value of z;

but if w is monogenic, each of these values depends only upon 2,
and not upon the way in which z is supposed to change.

In future, unless something is said to the contrary, we shall
give the name function only to monogenic functions. Thus we
shall not call such expressions as x— gi, or #+ y' 4 2zyi,
functions of 2.

Conjugate Functions.

210. If » and v are functions of « and y, satisfying equations
[3], Art. 208, it is easy to prove that

Djiu+4Diu=0 and Djv+DMv=0.
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For since D,u= D, and D,v=— Dy,
we have D}u=D,D,v and D}u=—D,D,v,
Div=—D.,Du and Div=D,D,u;
u and v are then solutions of Laplace’s equation,
DV+D}V=0. [1]

Any two functions ¢ and ¢ of z and y, such that
¢ (z,y)+ iy (x,y) is a monogenic function of x4 yi, are
called conjugate functions ; and, by what has just been proved,
each of a pair of conjugate functions is always a solution of
Laplace’s Equation [1].

Thus 2* —?, 2zy; e*cosy, e*siny; 4log (2*+ ¥°), tan“-'!;

z
are three pairs of conjugate functions, since «*—y* 4 2ayi
= (2 + yi)?, € cosy + ie*siny = e**7, {log (¢! +*) + ttan—1¥

z

= log (« + i), and consequently, by Art. 209, are all monogenic.
Therefore each of the six functions at the beginning of this
paragraph is a solution of Laplace’s Equation [1].

It 18 clear that we can form pairs of conjugate functions at
pleasure by merely forming functions of 24 yi and breaking
them up into their real parts, and their pure imaginary parts ;
that is, throwing them into the typical form w 4 vi.

If each of a pair of conjugate functions, ¢ and y, is written
equal to a constant, the equations thus formed will represent a
pair of curves which intersect at right angles. For let (z, y)
be a point of intersection of the curves ¢ =a, y =b; the slopes
D.é _D.y
D,¢ Dy
I.,, Art. 202; and since D,¢ =D,y and D,y =— D, ¢, the
second slope is minus the reciprocal of the first, and the curves
are perpendicular to each other at the point in question.

Thus 2* — y* = a, 22y = b, cut each other orthogonally ; as de

of the two curves at (x, y) are respectively —
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also {log (¢*+¥*)=aq, tan-'Y=b; or, what amounts to the
x
same thing, 2?4+ y'=aq, 31=b1. It must be observed, how-
z

ever, that 2* 4 y* and ¥ are not conjugate functions, and that
z

in general the converse of our proposition does not hold.

It may be easily proved that if ¢ and ¢ are conjugate func-
tions of  and y, and f and F are any second pair of conjugate
functions of z and y, the new pair of functions formed by re-
placing  and y in ¢ and ¢ by f and F respectively will be

conjugate.
Thus (e*cosy)? — (e*siny)?, 2e*cosy.e*siny,
or, reducing, e*cos2y, e¥*sin2y,

are conjugate functions ;

Hog [ (#*—y)? +(22y)*], tan-n(gfy_y,),
or, reducing, log (2 + %), tan“( 22y o>,
z—y

are conjugate.

The properties of conjugate functions given in this article
are of great importance in many branches of Mathematical
Physics.

ExaMmrLE.
Show that if 2' and y' are conjugate functions of x and y,
x and y are conjugate functions of x' and y'.
Preservation of Angles.

211. If w is a single-valued monogenic function of 2z, and
the point representing 2z traces two arcs intersecting at a given
angle, the corresponding arcs traced by the point representing
w will in general intersect at the same angle.

o
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For let z be the point of intersection of the curves in the z
plane, and w, the corresponding point in the w plane. Let z, be
a point on the first curve, and 2, a point on the second ; and let

w, and w, be the corresponding points in the w figure.

Let 7, r,, 8,, and 8, be the moduli of 2, —2,, 2z, — 2, w, — w,,
and w, — w, respectively, ¢;, ¢, ¢y, and y, their arguments;
then, since w is a monogenic function of z, we must have

limit L—"" —_%] = limit ["’——* = ""‘],
21 —2 2 — 2

or Timit [M] — limit [ﬂ‘b]
7, Ccis ¢, Ty CiS ¢,

whence, by Art. 23,
limit [? cis (Y, — qs,)] = limit [%’ cis (Y — 4,’)];
1 2

and since, when two imaginaries are equal, their moduli must
be equal, and their arguments must be equal, unless the moduli
are both zero or both infinite,

limit (Y3 — ¢y) = limit (¢ — &) ;

that is, the angle between the arcs in the w figure is equal to
the angle between the corresponding arcs in the z figure ; unless

dw =0, or dw =
dz =1 ! dz =1, )

If w is a multiple-valued monogenic function of z. and if
starting from any point z, the point which represents z traces
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out two curves intersecting at an angle a, each of the n points
representing the corresponding values of w will trace out a pair
of curves intersecting at the angle a; unless % is a point at

which (%w is zero or infinite.

If, then, w is any monogenic function of 2z, and the point
representing z is made to trace out any figure however complex,
the point representing w will trace out a figure in which all the
angles occurring in the z figure are preserved unchanged, except
those having their vertices at points representing values of z

which make %’ zero or infinite.

This principle leads to the following working rule for trans-
forming any given figure into another, in which the angles are
preserved unchanged.

Substitute 2' and y' for  and y in the equations of the curves
which compose the given figure, ' and y' being any pair of
conjugate functions (Art. 210) of z and y, and the new
equations thus obtained will represent a set of curves forming
a second figure in which all the angles of the given figure are
preserved unchanged, except those having their vertices at
points at which D,z' and D,y' are both zero, or at which one of
them is infinite.

For ex:uuple, r—y=a, (1)
x4+ y=">, 2)

are a pair of perpendicular right lines. Replace z by o* — 3*
and y by 2xy, and we get

@ — 2oy —y=a, ®)
2?4 2zy— y*=0, 4)

a pair of hyperbolas that cut orthogonally.

212. If w is a single-valued continuous function of z, it is
clear that if w, and w, are the values corresponding to z and z;,
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and the point 2 moves from z, to z, by two different paths, the
corresponding paths traced by w will begin at w, and end at w,,
and consequently that if z describes any closed contour, w also
will describe a closed contour.

If w is a double-valued function of z, since to each value of
z there will correspond two values of w, it is conceivable that
if w, and w,' are the values of w corresponding to 2,, and z moves
from z, tc 2, by two different paths, w may in one case move
from w, to w,, and in the other case from w, to w,’.

We can prove, however, that if the two paths traced by z do
not enclose a criticul point (Art. 207), and w is finite and con-
tinuous for the portion of the plane considered, this will not
take place, and that the two paths starting from w, will
terminate at the same point w,.

For as z traces the first path. each of the two points repre-
senting the two values of w will trace a path, one starting at w,,
and the other at w,’, and unless the z path passes through a
critical point, the two w paths will not intersect, but will be
entirely separate and distinct, and will lead, one from w, to w,,
the other from w,' to w,'.

If, now, the z path be gradually swung into a second position
without changing its beginning or its end, since w is a continu-
ous function, the two w paths will be gradually swung into new
positions ; but, provided that the z path in its changing does not
at any time pass through a critical point, the two w paths will
at no time intersect, and consequently it will be impossible for
the w points to pass over from one path to the other, and there-
fore the point which starts at w, must always come out at w,,
and not at w,'.

It follows readily from this reasoning that if z describes a
closed contour not embracing a critical point, each of the w
points will describe a closed contour, and these contours will
not intersect.

Of course, the proof given above holds for any multiple-
valued function.

In any portion of the plane, then, not containing critical
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points the separate values of a multiple-valued function may be
separately considered, and may be regarded and treated as
single-valued functions.

213. That in the case of a double-valued function two paths
in the z plane, including between them a critical point, but
having the same beginning and the same end, may lead to
different values of the function, is easily shown by an example.

Let w =z, and let 2, starting with the value 1, move to the
value —1 by the semi-circular path in the figure. That one of

4

=1 ol +1 o +1
Fie. 1.

the corresponding values of w which starts with 41 will de-
scribe the quadrant shown in the figure, and will reach the
point 1 .cis;, ori. If, however, z moves from 41 to —1 by

+1 Y o

Fia. 2.

the semi-circular path in the second figure, the value of w which
starts with 4 1 will describe the quadrant shown in the second

figure, and will reach the value l.cis(— :) or —1i. ‘These

two paths described by z, then, although beginning at the same
point 4+ 1 and ending at the same point — 1, cause that value
of the function which begins with +4 1 to reach two different
values ; and the two paths in question embrace the point z=0,
which is clearly a point at which the two values of w, ordinarily
different, coincide ; that is, a critical point.

- —
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It is easily seen that if 2, starting with the value 41, de-
scribes a complete circumnference about the origin, the value of
w which starts from the point + 1 will not describe a closed
contour, but will mgve through a semi-circumference and end
with the point 1.cisw or —1. Now, by Art. 212 any path

Fie. 3.

described by z beginning with +1 and ending with — 1 and
passing above the origin, since it can be deformed into the
semi-circumference of Fig. 1 without passing through a critical
point, will cause the value of w beginning with 4 1 to end with
+1; and any path described by z beginning with + 1 and end-
ing with —1 and passing below the origin, since it can be
deformed into the semi-circummference of Fig. 2 without passing
through a critical point, will cause the value of w beginning
with 4 1 to end with — 7. Therefore any two paths described
by z beginning with +1 and ending with —1 will, if they include
the critical point z=0 between them, lead to different values
of w, provided that the same value of w is taken at the start.

214. If w is a double-valued function of 2, and z describes a
closed contour about a single critical point, this contour may be
deformed into a circle about the critical point, and a line lead-
ing from the starting point to the circumference
of the circle, without affecting the final value of
w (Art. 212). Thus, in the figure, the two
paths ABCDA, AB'C'D'B'A lead from the
same initial to the same final value of »; and
this is true no matter how sinall the radius of
the circle B'C'D'.
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Let z be the critical point, and let w, be the corresponding
point in the w figure. As z moves from 2, towards z, the points

representing the corresponding values of w will start at w, and
w,’ and move towards w,, tracing distinet paths.

If, now, z describes a circumference about 2z, and then
returns along its original path to z,, the first value of w will
either make a complete revolution about w, and return along
the branch (1) to its initial value w,, or it will describe about

Case II.

w, a path ending with the branch (2) of the w curve, and move
along that branch to the value e,'.

In the first case, and in that case only, the value of
describes a closed contour when z describes a closed contour,
and is practically a single-valued function.

If 2, is a point at which %w is neither zero nor infinite
2

(v. Art. 211), when 2z describes about z, a circle of infinitesimal
radius, w will make about w, a complete revolution ; for since
if two radii are drawn from 2,, the curves corresponding to them
will form at #, an angle equal to the angle between the radii,
when a radius drawn to the moving point which is describing
the circle about z, revolves through an angle of 360° the cor-
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responding line joining w, with the moving point representing w
will revolve through 360°, and we shall have what we have
called Case I.

If, then, we avoid the points at which :11—1: i8 zero or infinite,

we shall avoid all critical points that can vitiate the results
obtained by treating our double-valued or multiple-valued func-
tions as we treat single-valued functions.

A critical point of such a character that when 2z describes a
closed contour about it the corresponding path traced by any
one of the values of w is not closed, we shall call a branch point.

When a function is finite, continuous, and single-valued for
all values of z lying in a given portion of the z plane, or when
if multiple-valued it is finite and continuous, and has no branch
points in the portion of the plane in question, it is said to be
holomorphic in that portion of the plane.

Definite Integrals.
215. In the case of real variables, f tfz.dz was defined in
Art. 80 in effect as follows : *

I‘fz dz= nh_l._ni [ (20 — 20) + 121 (22 — 21) + S2a (25 — 23) + -+
B +/20Z —2,.41)], [1]

where 2,, 23, 25, ...2,; are values of z dividing the interval
between 2z, and Z into n parts, each of which is made to
approach zero as its limit as » is indefinitely increased.

In other words, f ‘is the line integral of fz (Art. 163) taken

along the straight line, joining 2z, and Z if 2, and Z are repre-
sented as in the Calculus of Imaginaries.

It has been proved that if fz is finite and continuous between
2, and Z, this integral depends merely upon the initial and final
values of z, and is equal to FZ — Fz, where Fz is the indefinite

int.egralffz.dz.
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If z is a complex variable, and passes from z, to Z along any
given path, we shall still define the definite integral j Jz.dz by

[1] where now z,, 2, 2,...2,. are points in the given path
Two important results follow immediately from this defini-
tion :

1st. That ["rda=— 3 f.dz, [2]

if z traverses in each integral the same path connecting z, and Z.

z
2d. That the modulus of | fz.dz is not greater than the
%o
line-integral of the modulus of fz taken along the given path
joining 2z, and Z.

If we let
fe=w=u4vi,z2=z+yi, u=¢(2,y), and v=y (=, ¥),
then f ‘f.de= f (uvi) (de + idy)

= fe@natify@nd— (@ nay+ifs @y,
3]

each of the integrals in the last member being the line-integral
of a real function of real variables, taken along the given path
connecting 2, and Z.

If the given path is changed, each of the integrals in the
last member of [3] will in general change, and the value of

y Jz.dz will change ; and, since z may pass from z,to Z by an
in‘;inite number of different paths, we have no reason to expect
that fzfz. dz will in general be determinate.

\Ve‘osh'\]l however, prove that in a large and important class
of cases f Jz.dz is determinate, and depends for its value

upon z, and Z, and not at all upon the nature of the path
traversed by 2 in going from 2, to Z.
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216. If fz is holomorphic in a given portion of the plane,

£°'°fz.dz=0 [1]

if z describes any closed contour lying wholly within that
portion of the plane.
From [3], Art. 215, we have

j.-.oﬁ.dz =fw.dz =fud:c+ifvdx— 'vdy+ifudy, [2]

the integral in each case being the line-integral around the
closed contour in question.

Since w = fz is holomorphic, u=¢ (2, y), and v=y (2,¥),
and D,u, D,u, D.,v, and D,v are easily seen to be finite, con-
tinuous, and single-valued in the portion of the plane considered.
Therefore, by Art. 170,

f udx =f f Djudxdy ; f vdx =ffD,vd:vdy H
f vdy = —ffD,vdxdy; fudy = — f f Dudxdy ;

the integral in the first member of each equation being taken

around the contour, and that in the second member being a

surface-integral taken over the surface bounded by the contour.
We have, then, from [2],

f"fz.dz = f f (D,u+ D w)dady+ i f f (Dyp—D.u)dzdy, [3]
but D,u = D,v, and D,u = — D,v from [3], Art. 208. Therefore,
[3] reduces to 'ofz .dz=0.
From this result we get easily the very important fact that if
! 1
fz is holomorphic in a given portion of the plane, f Jz.dz will

have the same value for all paths leading from z, to OZ, provided
they lie wholly in the given part of the

plane. For let 2,aZ and 2,0Z be any
two paths not intesecting between 2, z,
and Z. Then z,aZbz, is a closed con- z

tour, and b
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f .'fz.dz (along z,aZbz,)
=f‘fz.dz (along zyaZ) +j.'°fz.dz (along Zbz)=0;
5 2 )

but £'°fz. dz (along Zbz,) = —fzfz.dz (along 2,02)
’ by Art. 215.

Therefore, f ‘fz.dz (along z,aZ) =fzfz.dz (along %b2).

a %o If the paths z,aZ and 2z,bZ inter-
sect, a third path z,cZ may be drawn
not intersecting either of them, and

5 by the proof just given

fzfz.dz (along zan)=fzfz.dz (along z,cZ),

z z
f JSz.dz (along % bZ) =f Jz.dz (along zcZ) ;
%o %
therefore,

fzfz.dz (along z,aZ) =fsz1 dz (along 2,bZ2).

217. If fz, while in other respects holomorphic in a given
portion of the plane, becomes infinite for a value T of z, then

ffz.dz taken around a closed contour embracing 7', while not

zero, is, however, equal to the integral taken around any other
closed path surrounding 7.

For let ABCD be any closed con-
tour about 7. With T as a centre,
and a radius ¢, describe a circumfer-
ence, taking € so small that the cir-
cumférence lies wholly within A BCD.
Join the two contours by a line 44'".
Then ABCDAA'D'C'B'A'A is a
closed path within which fz is holo-
morphic.
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Therefore,
f fz.dz (along ABCDAA'D'C'B'A'A)=0,
or f f2.dz (slong ABCDA) + f fo.dz (along AA')

+ f Jz.dz (along A'D'C'B'A") +fﬁ:.dz (along A'A)=0;
but

{1

and
f f2.dz (along A'D'C'B'A") = — f fz.dz (along A'B'C'D'A").

n

.dz (along 44") =— f J2.dz along (A'A),

Hence

fﬁ:.dz (along ABCDA) = ffz.dz(a]ong A'B'C'D'A").

218. That the integral of a function of z around a closed
contour embracing a point at which the function is infinite is
not necessarily zero is easily shown by an example.

fz=%, t being a given constant, is single-valued, con-
tinuous,z ;d finite throughout the whole of the plane except at
the point ¢, at which % becomes infinite, without, however,
ceasing to be single-valu;d.

Let us take f % around a circle whose centre is ¢, and

whose radius is any arbitrarily chosen value e. If z is on the
circumference of this circle

z—t=c(cos¢ + isin¢p)
= e by [5], Art. 31.
z=1t+ e b ¢
and dz = iee*'d. o]
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tee®ddp _

= 2mi.
eedi

dz 2
Hence f ——— (around abc) = f
z—1 0

From what has been proved in Art. 217, it follows that
f_dz_i around any closed contour embracing ¢ must also be

equal to 2=t
As another example let us consider f ﬂtdz, when F2 is
z—

supposed to be holomorphic in the portion of the plane con-
sidered, and where the integral is to be taken around any closed
contour embracing the point z=¢.

zi‘z—t is holomorphic except at the point z=¢, where it
becomes infinite. The required integral is, then, equal to the
integral around a circumference described from the point ¢ as
a centre, with any given radius ¢, that is, by the reasoning just

used in the case of j dz 7 to

2 —

f” E(t.’k_‘é")w—i(eé‘d‘#, or i ”F (t+ ee*) dop;
0 i 0
and in this expression e may be taken at pleasure. If now e is
made infinitesimal e¢®* is infinitesimal, and since F% is continu-
ous F' (¢ + ee*) is equal to Ft 4  where y is some infinitesimal,
and F(t 4 ee**) d¢ is equal to FY.de + n.dé.

Now, by I. Art. 161,

ST Fe.ap+nap)= [ Fr.ds
ez (" Fe.dg.
Hence i‘an(t+ce‘“) d¢ =if”n.d¢=2,.~m;

and we get the important result that th dz, taken around any
2 —

contour including the point z=¢, is equal to 2xt. F¥.

From this we have =-i- __F:z_ H
2 32—t
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and we see that a holomorphic function is determined every-
where inside a closed contour if its value is given at every point
of the contour.
If in the formula Ft=- l— P dz 1]
27iJ z—t
we change ¢ to t 4 At, we get

AFt=_L 'Fz.dz( 1 ) __Fz.dz.At_
2 z - 27

i —t—Al (z—t)(z—t— At)
whence
limit 1 limit 1
= Fz.d .
at=0 [ :] f - At=0[(z—t)(z—t—At)]’
1 Fz.dz
Ft=_— H 2
or ) Gt [2]
and in like manner we get
't 3
f (z—1t)? ’ (3]
. . Fz.dz
and in general Fmg= 21nf(z myrer [4]

each of the integrals in these formulas being taken around a
closed contour lying wholly in that portion of the plane in which
Fz is holomorphic, and enclosing the point z =¢.

219. The integral of a holomorphic function along any given
path is finite and determinate, for, by [3], Art. 213, it is equal
to the sum of four line integrals, each of which is finite and
determinate (Art. 166).

If a series w,+ w, + wy+ ---, where wy, w,, wy--+ are holo-
morphic functions of z, is convergent for all values of z in a
certain portion of the plane, the integral of the series along any
given path lying in that portion of the plane is the series formed
of the integrals of the terms of the given series along the path in
question, and the new series is convergent.
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For let S=wy+w, +wg+ - + W, + Wiy + -+
=wo+w +wy+ - +w, + R,

where R=w, ;4 W+ -,

and where by hypothesis 711::2 [R]=0. 1)

dez:fwodz+fwldz+m+fw_dz+fR.ds

for any given value of n.
By the proposition at the beginning of this article, dez
along the given path is finite and determinate, as are also

fwodz, fw,dz, etc.

If, now, n is indefinitely increased,

fsaz=fwodz+fw,dz+fw,dx+---+'}i:2f11dz.

The modulus of f Rdz is not greater than the line-integral

along the given path of the modulus of R (v. Art. 215°. Asn
increases each value of the modulus of R approaches zero as its
limit (1) ; consequently each element of the cylindrical surface
representing the line-integral of the modulus of R (v. Art. 166)

approaches zero, and 71':_’2 fRdz =0.

Therefore, dez =fw,,dz +fw, dz + fw,dz N [2]

and, since the first member is finite and determinate, the second
member is a convergent series.

Taylor's and Maclaurin’s Theorems.

220, IT:;;'=1+q+qf+qs+...+q._x

identically, if » is a positive integer, even when ¢ is imaginary,
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If the modulus of q is less than 1,

hmnt [ *]=0.
limit [1 — 1
H 1 oo == ' 1
ence 14+9+¢+¢+ n=w[1_q] T—¢ (1]
even when ¢ is imaginary, provided that the modulus of ¢ is

less than 1.
Suppose, now, that everywhere within and on a certain cir-

cumference described with the point z=a as a centre F% is

holomorphic. Let 2=t be any point within this circumference,

and z= Z be a point on the circum- .

ference. Then the modulus of Z —a 7

is the distance from a to Z, and the

modulus of ¢ — a is the distance from

atot;

hence mod (¢ — a) < mod (Z — a),

t—a °
and mod(z_ )<1
1 1 _ 1 1
Z—t Z—a—(t—a) Z—a | _t—ga’
Z—a

_ 1 r t—a , (t—a)®  (t—a)® ,
~7—a 't Z=aT Z=ay T Z=ayp " :l
Hence by [1]

1 1 t—a (t—a) | (t—a)? 9
Z—t Z— a+(Z——a)’+(Z a)"+(Z a)‘+ - (2
and the second member of [2] is a convergent series.

Multiply [2] by f_'_Z" and the series will still be convergent
2mt

for each value of z which we have to consider; we get

1 Fz
2m Z—t
FZ FZ . FZ
“imiz—a TV Z-ap TV E gyt ] ]

i .
et . -
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Integrate now both members of [3] around the circumfer-
ence, and we have
1 FZ 1 FZ FZ
e gdz=—| (FLaz 4@ f 92
2i) Z—t 21ri[ Z—a 2t =9 7z

+(t—a)f( dZ+ ] [4]

and, since each of the functions to be integrated is holomorphic
on the contour around which the integral is taken, and the
second member of [3] is convergent, each integral will be finite
and determinate, and the second member of [4] will be con-
vergent.

Substituting in [4] the values obtained in Art. 218, [1], [2],
(8], and [4], we have

2 3
Ft=Fa+(t—a)Fa +£‘~;2LI«"a+ i‘_g'_“LFma $on
+ _(t_—-Ta)_" F™a 4 ... [5]
n!
If the point z=a is at the origin, a = 0 and [5] becomes
Ft = Fo+tFo + F”u + F’"o + .. [6]

which is Maclaurin’s Theorem.
That [5] is merely a new form of Taylor’s Theorem is easily
seen if we let t —a =h, whence ¢t =a 4+, and [5] becomes

h®

Fa+h)=Fa+hF'a + F" + F”'a + . [7]
[6] can, of course, be written
2? 2
Fz=Fo+zF’o+2—!F"o+§_!F’"o+..., [8]
and [5] as

Fz=Fa+(z—a)F'a+§z—§'a—‘)2F"a+£z';—'a)-sIr""a+ s
(9]
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and we get the very important result that if a function of z is
holomorphic within a circle whose centre 18 at the origin &t may
be developed by Maclaurin’s Theorem, and the development will
hold, that is, the series will be convergent, for all values of z
lying within the circle.

If a function of 2z is holomorphic within a circle described
from z=a as a centre it can be developed by Taylor’s Theorem
into a series arranged according to powers of 2—a, and the
development will hold for all values of z lying within the circle.

The question of the convergency of either Taylor’s or
Maclaurin’s Series for the case when z lies on the circum-
ference of the circle needs special investigation, and will not
be considered here.

If the function which we wish to develop is single-valued, in
drawing our circle of convergence we need avoid only those
points at which the function becomes infinite; but if it is
multiple-valued we must avoid also those at which its derivative
is zero or infinite (v. Art. 214).

221. We are now able to investigate from a new point of
view the question of the convergence of the series obtained by
Taylor’s and Maclaurin’s Theorems in I. Chap. I1X.

Let us begin with the Binomial Theorem,

(a) (a+h)*=a"+na*'h +n§"T_!]_2a--2h’+..., [1]
or, fdllowing the notation of [9], Art. 220,
z"=a,"+na""(z—-a)+§_(n27_])an-9(z_a)2+..., [2]

If n is a positive integer, z* is holomorphic throughout the
whole plane, and [2] holds for all values of 2z and a, and [1]
for all values of a and A.

If n is a negative integer, z" is single-valued, and it is finito
and continuous except for z=0, where 2" becomes infinite.
[2] is, then, convergent for all values of 2 lying within a circle
described with a as a centre and passing through the origin;
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that is, for all values of 2, such that mod (z — a) < mod a ; and
consequently [1] holds if mod h < mod a.
If nis a fraction, z* is multiple-valued, and our circle of

convergence must avoid the points at which Zi becomes zero
2

or infinite ; but as the origin is the only point of this character,
the circle of convergence is the same as in the case last con-
sidered, and [1] holds for all cases where mod h < mod a.

When « and & are real our results agree with those obtained
in I. Art. 131.

(b) e =¢e*" =¢*(cosy + isiny) ([4], Art. 31)

is single-valued and continuous, and becomes infinite only when
x=o. Maclaurin’s development for e* holds, then, for all
finite values of z.

(¢) logz = log (rcis¢) =logr + ¢t (Art. 33)
is finite and continuous throughout the whole plane. It is,
however, multiple-valued, but its derivative i becomes infinite

only when 2z =0, and does not become zero for any finite value
of z. logz, then, can be developed into a convergent series,
arranged according to powers of z — a, for all values of z within
a circle having the centre a and passing through the origin;
that is, for all cases where mod (z — ¢) < mod a.
Ifz—a=nh, we get
log(a+h)=loga+%——}£-+ " K

2¢2 " 3a° tdt

4 ey [3]

[3] holding for all cases where mod h < mod a.
Ifa=1 and k =z, we get

2

3
10g(1+z)=%—§+§—i—‘+---, [4]

which holds for all values of 2z where mod z < 1.
e +4e? e’ —e?
2

(d) sinz =sin (v +yi)=sinzx. +icosx-

k]
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-y — e
and cosz=cos(a:+yi)=cosx-e%e— e—e

—1isinz- 7
(v. [8] and [4], Art. 35)
are single-valued, and are finite and continuous throughout the
plane. Therefore, Maclaurin’s developments for sinz and cosz
hold for all values of z.

sinz 1 .
(e) tanz=——=, and secz=—, are single-valued and
cosz cosz

continuous, and become infinite only when cosz=0; that is,
when z = ’Er Therefore, Maclaurin’s developments for tanz and
secz (I. Art. 138), hold for every value of z whose modulus is

less than 7.
2

08 2 1 . .
(f) ctnz= c_—, and cscz=—— become infinite when z=0,
sinz sinz

and cannot be developed by Maclaurin’s ‘I'heorem.
(9) sin~'z is finite and continuous throughout the plane; it

becomes

is, however, multiple-valued, and its derivative —\/1—;

infinite when z =1, and when 2= —1. Therefore, the develop-
ment for sin~'z (I. Art. 135 [2]), holds for any value of 2
whose modulus is less than 1.

(k) tan~!z is finite and continuous throughout the plane; it

is multiple-valued, and its derivative 1 1 o becomes infinite

when z=1i, and when z=—1{. Therefore, the development for
tan-'z (I. Art. 135 [1]), holds if modz <modi; that is, if
modz < 1.
ExXAMPLES.
(1) Show that the development of ] iz
in I. Art. 136, Ex. 1, holds if modz < 1.

(2) Show that the development of log (1 4+ e*), given in I.
Art. 136, Ex. 2, holds if modz < =.

(8) Obtain the following developments, and find for what
real values of x they hold good :

+log (1 +2), given
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(a) log (z+ \/a:m)=loga+§--:2 . J—x(:—a+;_i . %5_
®) (€ +ey =2-<1 +%+n(3n——2)f—!+...).
(¢c) e.cosz =1+x_.23_“;3_%...

(d) e =e(l-—-§;+%‘_3‘:_?"... .

(e) elog(l+2) =x+:2!+§_“§'+%...

(f) tan‘z =w4+%+6?x°m

9) (1+2z+3z')'*=1_x+2xv_7%‘...

(k) em's =1+z+%’_%’...

(¥ 1og(£) =2(x+§+§...).

. 2 20 L 2417 ., 20,831 5. 2°.691
@)} tanx=m+ﬁx’+5»!x’+ 4 97 24 I ...

2 oz 228 tind 2z
k) zoetnz =1—=_% _2¢ ¥ _ 22°
(k) =.ctnz 3 45 945 4725 03555

™ _ n 28 o, 5.2% . 61.27
@) log tau<2+x)—log tani+2a:+5—!:v +-5—!—:r‘+?z7

inm z 2 32 825 32° 56
(m) e =t e 3 5 et T T

[
3T 1778

'

ne 32 | 9at
@) e =ttt ittt o T er
erainla) 2 (pg B 128 1232
(0) (versin™az) <x+3.2+3.5 stssrat
12 25 o 20 205 o

P e era Tt E

Mtz 3 4 _(3_ 4\, /3 _4 .
) e 22 3-= (2 3)'*'(2* 3*)“"
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(@) —a<z<a;

) —w<z<®if n>0, —g<x<.

() —x<z< 2}

(e) —1<z<1;
@) —i<z<};
) —1<z<1;
(k) —r<z<m;
(m) —x<z<o;

(0) —2<z2<?2;
(9 —2<z<2.

Answers.

;':ifn<0;

(d) —o<z<2;
(0p) —5 <<

) —1<z<1;

o w T,
U)—§<w<y
n T ™.
O] 15%<}

™ 1r.
(”) 2<z<§,

(p) —V2<z<V2;
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CHAPTER XVIIIL
KEY TO THE SOLUTION OF DIFFERENTIAL EQUATIONS.

222. In this chapter an analytical key leads to a set of con-
cise, practical rules, embodying most of the ordinary methods
employed in solving differential equations ; and the attempt has
been made to render these rules so explicit that they may be
understood and applied by any one who has mastered the Inte-
gral Calculus proper.

The key is based upon ¢ Boole’s Differential Equations”
(London : Macmillan & Co.), to which or to ¢‘ Forsyth’s Differ-
ential Equations” (London: Macmillan & Co.), we refer the
student who wishes to become familiar with the theoretical
considerations upon which the working rules are based.

223. A differential equation is an expressed relation involv-
ing derivatives with or without the primitive variables from
which they are derived.

For example :

d

(1+2)y+(1-yezl=0, M
dy

P =5 — = 1, 2
e —ay==z+ @)
wd—y—u+x\/x“—y"=0, 3)
dz °

dy\* dy

L) = A 4
(d.r) Y (y+1d.v ’ )
d'y &'y | Py dy

—J_9_J 42 L __ 2 =1

dx* dsdt + da® d.::+y ’ )
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sin’x%-{-sinxcosxg_i—y=x—sinx, (6)

z(l—w)’%—2y=0, )
@y (1-2),=

. (1-Z)sms
Dj2z—a*D}z=0, 9)

are differential equations.

The order of a differential equation is the same as that of the
derivative of highest order which appears in the equation.

Equations (1), (2), (3), and (4) are of the first order; (6),
(7), (8), and (9) of the second order; and (5) of the fourth
order.

The degree of a differential equation is the same as the power
to which the derivative of highest order in the equation is
raised, that derivative being supposed to enter into the equation
in a rational form.

Equations (1), (2), (3), (8), (6), (7), (8), and (9) are all
of the first degree; (4) is of the third degree.

A differential equation is linear when it would be of the first
degree if the dependent variable and all its derivatives were
regarded as unknown quantities.

Equations (2), (5), (6), (7), (8), and (9) are linear.

The equation not containing differentials or derivatives, and
expressing the most general relation between the primitive vari-
ables consistent with the given differential equation, is called
its general solution or complete primitive. A general solution
will always contain arbitrary constants or arbitrary functions.

The differential equation is formed from the complete primi-
tive by direct differentiation, or by differentiation and the
subsequent elimination of constants or functions between the
primitive and the derived equations.

If it has been formed by differentiation only without sub-
sequent elimination or reduction, the differential equation is
said to be exact.
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A singular solution of a differential equation is a relation
between the primitive variables which satisfies the differential
equation by means of the values which it gives to the deriva-
tives, but which cannot be obtained from the complete primitive
by giving particular values to the arbitrary constants.

224. We shall illustrate the use of the key by solving equa-
tions (1), (2, (3), (4, (3), (6),(7), (8), and (9) of Art. 223
by its aid.

1) (1+z)y+(l—y)z%=0, or (14z)ydz+ (1—y)zdy=0.

Beginning at the beginning of the key, we see that we have a
single equation, and hence look under I., p. 310; it involves
ordinary derivatives: we are then directed to II., p. 310; it
contains two variables: we go to IIl.. p. 310; it is of the first
order, IV., p. 310. and of the first degree, V., p. 310.

It is reducible to the form

1_+3dz+,1_7_ydy=0,
x Yy

which comes under Xd.r 4+ Ydy=0.

Ilence we turn to (1). p. 314, and there find the specific direc-
tions for its solution. Integrating each term separately, we get
logx+z+logy—y=c, or log(zy)+zx—y=c,

the required primitive equation.
dy
2 r=——ay=2z+1.

(2) de W=t

Beginning again at the beginning of the key, we are directed
through I., II., IIL., 1V., to V., p. 310. Looking under V..
we see that it will come under either the third or the fourth
head. Let us try the fourth; we are referred to (4), p. 314,
for specific directions.

Obeying instructions, the work is as follows:

:cd—”—ay =0,

dx
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zdy — aydx =0,
dy_edz _
y z
logy —alogz=c,
log%=c;
C,
y = Cx, (1)
ac

dg _
Y _ aCre +29C.
a0 TG

<

Substitute in the given equation,
aCz® 4+ x‘*’%q— aCrr=z+1,
dx

z‘*’%g—(x-i-l):(),

z+1,
dC — o dz =0,
1 1
C+———++—=0C.
+ (a— l)a:‘"+a9:' ¢
Substitute this value for C in (1), and we get

y=C'a:‘—(}'+ z ),

a—1
the required primitive.

3) m%—-y+w\/z‘—y’=0.

Beginning at the beginning of the key, we are directed
through I., II., IIL., IV., to V., page 310. Looking under V.,
we find that our equation does not come under any of the
special forms there given. We are consequently driven to
obtaining a solution in the form of a series, and for specific
instructions we are referred to (138), page 316. Obeying
these, our process is the following :
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dy _y_ — Wo _Yo_ \Jri 3
btk Cly i = Vot — yo,
a P — a PR —
fy__3y - PY_ 8% Y73
o] +VE =, i %+\/% vo
ﬂ:y-’-é‘\j:ﬁ— d._l"’:yo_*_i-\/zo?_y’
d.’l}" z ) d:l.‘o‘ Z 09
Py _dy_ym—p @Yo_5% _ 3
o= - VE = ik Vad—yd,
ﬂ:- — =Vt — %:—y__\/xo’_y’
izt ’ dzo, o 0
dy__ Ty — Yo _ T Jz7—u3.
o x+\/x’ ¥, = %+~/xo ¥o';

and the general value of y is
—z,)? 2
y=w+ (o= (% VEr=e) - 5"—2,’—"1(31 +2va _yox)

_E=n) B s
— NV — Yo

3! x,

x — x,)* 4 x—20)% /5
+ KTO)(.% + 2 Va2 —.’/o’) + (_5‘ '“‘)—<%) - m)

x—2,)° 6 —
_ﬁ_s‘f‘i(y‘) +;,\/%2_ y02>

. 0
This result can be very greatly simplified by breaking up the
series ; we have

= _e—m)?, (x—x)t  (z—2)°
y_‘%(l 2 T I

(x— ) z—m) | (z—2)'  (2—x)®
L L (1_1 21)+ i el )

31! 5! 7!
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_m(w;%>((x_%)_(w—%)’+ (—=2)*

31 51
(=) |
7! ’

or

y=z[:%:cos(z—-z.,)———w%—° sin(a:-a;o)]

=z o —y)— \[ _¥ . gin(z— ]

=z| = cos (z — & 1 - sin(2—%) |
[ con o2 % . sin (v —2)

Yo g entirely arbitrary ; call it sina, then

%

y = z[sina cos(z — z,) —cosa sin(z — 2,) ] = zsin[a—(2 — 2,) ],

y =2z sin (c — ), where c is any constant.

ay\' gy,
O (@t
Beginning at the beginning of the key, we are directed
through I., II., II1., IV., to VI., page 311. Looking under VI.

we see that the equation is of the first degree in z; we are
referred to (17), page 318, for our specific instructions.

Obeying these, we first replace % by p ; the equation becomes

=y (y+ap).
Differentiate relatively to y, and we get

3p*§—§=4y‘(y+w)+2y*+xy‘%-

Eliminate z,
dp__ 70 ( dp
3 ——=4—+2 + P A D
p’dy v v+ (' )y’
or 20+y dp_o,Cr+y) .
p dy y
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Striking out the factor 2p* 4+ y*, we have
1
lap_2_,
pdy y

a differential equation of the first order and degree in which
the variables are separated, and which therefore can be solved
by (1), page 314.

Its solution is logp —logy*=0C,

or E:c.

Eliminating p between this and the given equation, and re-

ducing, we have cy(x —c¢*)=1, as our required solution.

d'y &y @y dy
=28 ¥ 4 0% Y _o8d L y—1.
©) ¢ dr*  dz? 2dx y M

Beginning at the beginning of the key, we are directed
through 1., IL., III., VII., to (22) (a), page 319, for our
specific directions.

We see at once that y =1 is a particular solution.

Obeying directions, we have now to solve

2y

2 2@y _
dat dx

b 2:—:’:+y=0 by (21). (2)
Let y =e™, and we have
m=2mP2m*—=2m41=0,
as our auxiliary algebraic equation in m. Its roots are
1,1, V=1, —v—-1.
The solution of (2) is then

y=(A+ Bz)e* + Ccosz + Dsinz,
and of (1) is
y= (A + Bzx)e* + Ccosx + Dsinx 4 1.
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d*y
dz?

(6) sin’z +sinxcosz%—y=x—sinz. (1)

Beginning at the beginning of the key, we are directed
through 1., IL., III., VII., to (24), page 321, for our specific
instructions.

Dividing through by sin’z, the equation becomes

&'y
dz?

+ctnx%—cec’x.y:zc&@z—cscz. (2)

y = ctnz is found by inspection to be a solution of

LY on s
W -+ Ctnxd—'—x

(2) can then be solved by (24) (a).
Substitute y =z ectnz in (2), and it becomes
d*z

ctn a:(—l;s-i- (ctn*z — 2 csc*x) %: zcsc’z — csee,

—csc’z.y=0;

or %—(tanx-}-seczcscm)%:zseczcscz—-secx. (3)

Referring to (25), page 323, and obeying instructions, we

let z'=g?, and (3) becomes
2z

U

2
& _ (tanz + secx cscx) z' = T secx cscx — sec,

dx

a linear differential equation of the first order ia 2'. whose solu-
tion by (4), page 314, is

2' = A tanx secx — x sec’z + tan z secx (log tang — log sinz) ;
but 2'= %, whence integrating, we have
z
2 =B+ Asecx — xtanx — (1 + secx) log (1 4 cosz),

and
y=Acscx+ Betnx — x — (cscx + ctnx) log (1 4 cosz).



304 INTEGRAL CALCULUS. [ART. 224.

- RVY. S
) z(1 x)d.r’ 2y=0,

Beginning at the beginning of the key, we are directed
through L., 1L, 1L, VII., to (24), page 321, for our specific
instructions.

Let us try the method of (24) (e), page 323.

Assume y = Sa_,x". and substitute in the given equation;
we have

Sm(m—-1)a.z»'-2m(m—1)a,z™
+m(m—1)a,z*" —20¢,2*]=0.

Writing the coeflicient of z* in this sum equal to zero, we
have
m(m+1)a,,—2[m(m—1)+1]Ja.+(m —1)(m — 2) a,_,=0,
and we wish to choose the simplest set of values that will
satisfy this relation.
Substituting m =0, m =—1, m =— 2, ete., in this relation,
we find
A_1=0p. A_g=GA_jy A_g=CQ_gy **°.
Hence if we take a, =0, it follows that
a,=a,=a_ =0,

and no negative powers of x will occur in our particnlar
solution.
Substituting now m =1, m =2, m =3, etc., we have

Q=AQ=QqA3 = A4 == «+.

Taking a, = 1, we get as our required particular solution of the
given equation
y=rx+ 24424
This can be written in finite form, since we know that
1 +I+I“’+x’.-- =—!'—.
l—2
x
1—-2

Hence Y=

is a particular solution.
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Turning now to (24) (a), page 321, wé find
y= _c"'"-+c'(l +z+ 1% logz).

1—2 z

(8) :’—z,l+(l—%)y=0.

Beginning at the beginning of the key, we are directed
through L., II., III., VII., to (24), page 321, for our specific
instructions. Let us try again the method (24) (e), page 328.

Assume y = 3 a,2™, and substitute in the given equation,

3[m (m —1)a, 2+ a2 — 2a, 2~ 1]=0.
The terms containing «™ are

(m+42) (Mm+1) Gy + a2 — 20,3 2°;
writing the sum of the coefficients equal to zero, we have
m(m+3) a, s +a,=0. Q)

Letting m = 0 and m = —8, we get ay=0and a_s=0; and all
terms of y involving even negative powers of z disappear, as do
all terms involving odd negative powers, except the — 1st.

I al =0 2

n gener. Guis m(m £ 5) 2)

From this we get

1 .
a, =—2;-";, =—3!5, 1fwe takea,=i,
— ay = 1
%= 2457 517
a, _______L =_._l_
8 2.4.5.6.7.9 719
am a’ = l
2.4.5.6.7.8.9.11 9111 .
®? o B P z
Hence y=3"s5t5r7 7o tornn

is a particular solution of the given equation. This can be
thrown into finite form without much labor.
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? 2 o 2 "
Websve  ay=3—3r5t57 79 orn "

5! 71 91
=as8inz;
whence 2y = 8inx — & cos ,
and =£(sin:c—xcosz).

By going back to (2), and using odd values of m, we get
anotber solution of our given equation, namely,

1,z 2 z ol
y=ztimatoe e
which can be reduced to

y=£(cosx+zsina:).

Hence our complete solution is

y=i[A(cosa:+xsin:c) + B (sinz —z cosx) ],
or y =A'[w§:—°) + sin (x — c)],

. B
f let = =tanc.
lweeA ¢

9) Diz2—a'D}z=0.

Beginning at the beginning of the key, we are directed
through I. and IX. to (45), p. 3381, for our specific instruc-
tions.
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Obeying these, our work is as follows :

dy —atd?? =0,
dy —adz =0, @)
dy +adx =0, 2
dpdy — a*dqdz = 0. o)
Combining (1) and (3), we get
dpdy — adqdy = 0,
or dp —adg=0. 4)
(1) gives y—ar=a.
(4) gives p—ag=4A.
(2) and (3) give us, in the same way,
y+ar=a,
p+ag=p;
and our two first integrals are
p—aq=5(y—az), )
p+ag=,,(y +az), (6)

/1 and f; denoting arbitrary functions.
Determining p and g, from (5) and (6),
p=4[AY+az)+/i(y—az)],

9=5-[fi(y+az) —fi(y—am)];
&z =4 [fi(y+a2) +fily—o@)] da+ - [fi(y+am)— fi(y—ox)]dy

2 (y +az) (dy + adz) — f, (y — az) (dy — adz)
2a

Hence, z=F(y+az)+ Fi(y —az),

where F and F) denote arbitrary functions obtained by integrat-
ing f; and f;, which are arbitrary.
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225. When a differential equation does not come under any
of the forms given in the key, a change of dependent or inde-
pendent variable, or of both, will often reduce it to one of the
standard forms. No general rule can be laid down for such a
substitution. It will, however, often suffice to introduce a new
letter for the sum, or the difference. or the product, or the
quotient of the variables, or for a power of one or of both.
Sometimes an ingenious trigonometric substitation is effective,
or a change from rectangular to polar codrdinates ; that is, the
introduction of r cos ¢ for x and rsin¢ for y.

The following examples of such substitutions are instructive.

(A.) Change of dependent variable.

dy _ . 2
1 —_—=a dz — =
1) (=+yr37 @, reduces to = —dz — dz = 0.
if we introduce z = x 4 .
de _ . de
2) —= —6). ———d¢=0,
(2) g ="n(¢— ). reduces to ;72 —d$ =0
ifo=¢—4.
(3) («—y)de +2zydy =0, reduces to (£ — z) dr + xdz =0,
if z=1"
(4) T']—‘y—-y-{-z\lx’—y’=0, reduces to —92 +dr=0,
dx Vi—Z
ifz=3/.
x

() Z-:_/ +§ % —n'y =0, reduces to %_‘: —n'2=0,
if z=u2y.
(B.) Change of independent variable.

1 (1- z‘-’)’i_g{ + y =0, reduces to

P W00 if z=si
cos0d0'+sm00050d0+y 0, if x=siné.
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(2) Z:g + tanxidd-g + cos?z.y = 0, reduces to % +y=0,
if z=sinz.
(C.) Change of both variables.

1 (l—%:)xy (a:’-—y‘—a’), reduces to

z%_gg(z —a)=0, if z=2and v=y".

@) (y—2)Q1 +x’)* %= (1 +y’)g, reduces to
sin (¢ —0)dep = db, if 2= tanf and y=tan¢.

3) (a:— —y) = a(l + d_v’) @+ ) g, reduces to

dr ——_O if z=rcos¢ and y=rsing.

Vr(1—ar) +Va
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KEY.

Single equation . . . . . . . . . .
System of simultaneous equations. . . . .

I. Involving ordinary derivatives . . . . . .
Involving partial derivatives . . . . . .

II. Containing two variables . .
Containing three variables and of ﬁrst degree
General form, Pdx 4 Qdy 4+ Rdz=0 . . .
Containing more than three variables and of
the first degree. General form, Pdz, + Qdz,
+ Rdxy+--=0 . . . . . . . . .

III. Of firstorder . . . . . . . . . . .
Not of firstorder . . . . . . . . . .

IV. Of first degree. General form, Mdx 4+ Ndy =0
Not of first degree . . . . . . . . .

\'A Of first degree. General form, Mdz + Ndy
=0.

Variables separated or separable; that is, of

or reducible to the form Xdx+4 Ydy=0,

where X is a function of x alone, and Y is a

function of y alone*
M and N homogeneous functlons of x and y of

the same degree. . . . . . . . . .

* Of course, X and ¥ may be constants.

P
I. 310
VIII. 318

. 810
IX. 318

II1. 310

(36) 327

(37) 328

IV. 310
VII. 312

V. 310
VI. 311

(1) 814

(2) 814



VI.

KEY.
Of the form (az + by+-c) dz + (a'z + b'y+c')dy
Linear. General form, Z—Z+ X,y = X,, where

X, and X, are functions of 2 alone*® . .
Of the form ?I"Z + X,y = X,y", where X, and X,
x

are functions of z alone®. . . . . . .
Mdx 4 Ndy an exact differential. Test, D, M
=DN . . . . . . <« o« v .
Mz+ Ny=0
Mz — Ny =0 T
Of the form F, (zy) ydx + F; (zy)zdy =0
QIM—;TPLZY, a function of x alone . . . .
Q'N—“--JWDI—]!, a function of y alone . . . .
Qllély%_—lll;;lv’ a function of (zy)

A solution in the form of a series can always be
obtained . . . . . . . . . . .

Not of first degree.
Can be solved as an algebraic equation in p,

where p stands for glz C e e e e e e
Involves only one of the variables and p,
dy

herepstandsfor 2. . . . . . . .
w P 2

Of the first degree in z and y; that is, of the
form zf,p + yfup =f;p, where p stands for
dy
dz *

Of the first degree in z or y .o

Homogeneous relatively tozandy . . . .

* Of course, X, and .X; may be constants.

811

Page
(8) 314

(4) 814

(5) 815
(6) 315
(7) 315

(8) 315
9) 815

(10) 315
(11) 316

(12) 816

(13) 316

(14) 3817

(15) 317

(16) 317

(17) »18
(18) 318
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VII.
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Of the form F (¢, y)=0, where ¢ and ¢ are

functions of z, y, and Z—Z, such that ¢ =a

¢=2>, will lead, on differentiation, to the
same differential equation of the second
order. . . . . . . . . . . . .
A singular solution will answer . . . . .

Not of first order.
Linear, with constant coefficients; second
member zero®* . . c e
Linear, with constant coeﬂiclents, second
member not zero*

Of the form (a+bx)" "+A( a4+ bz)"- 1d_’;:¥

+ o+ Ly= X, where X is a function of

z alone t .
Linear ; of second 01der coeﬂiuents not con-

stant. General form, %:’z + P:_i + Qy=R;
P, Q, and R being functionsof z . . .

Either of the primitive variables wanting . .
Of the form g%/= X, X being a function of

zalonet. . . . . . . . . . ..
Of the form %= Y, Y being a function of

yalonet. . . . . . .+ .« o . .
dny— dn—ly
Of the form da:" = d—x""‘ « e e e e .
1 o e e s+ e e
Of the form fdx" %

Homogeneous on the supposition that x and

Page

(19) 318
(20) 318

(21) 319

(22) 319

(28) 321

(24) 321
(25) 328

(26) 328

(27) 824
(28) 324

(29) 324

* The first member is supposed to contain only those terms involving the dependent
variable or its derivatives.
t Bee note, p. 310.



VIII.

IX.

XI.

KEY.

y are of the degree 1, Z—Z of the degree 0,
d'y

o

of the degree —1, ... .
Homogeneous on the supposition that « is of

the degree 1, y of the degree =, ggz of the

degree n — 1, oy of the degree n — 2, --.
. dy dy
H latively to y, ==, —<Z, ... .,
omogeneous relatively to y ,

Containing the first power only of the deriva-
tive of the highest order . .

Of the form %, + Xg—i + 1’[%]’: 0, where

X is a function of x alone and Y a func-
tionof yalone* . . . . . . . .
Singular integral will answer . . .

Simultaneous equations of the first order .
Not of the firstorder . . . . . .

All the partial derivatives taken with respect
to one of the independent variables .

Of the first order and Linear ..

Of the first order and not Linear . . .

Of the second order and containing the deriv-
atives of the second order only in the first
degree. General form RDj?z+ SD,D,z +
TD}!z=YV, where R, S, T, and V may be
functions of z, y, z, D.z, and D,z .

Containing three variables . . . . .
Containing more than three variables . .

Containing three variables
Containing more than three variables . . .

* See note, p. 310,

813

(30) 325

(81) 825
L]

(82) 825

(33) 325

(34) 826
(85) 326

(38) 328
(39) 329

(40) 329
X. 813
XI. 313

(45) 881

(41) 330
(42) 330

(43) 830
(44) 331
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Of or reducible to the form Xdz 4 Ydy = 0, where X is
a function of z alone and Y is a function of y alone.

Integrate each term separately, and write the sum of
their integrals equal to an arbitrary constant.

M and N homogeneous functions of z and y of the
same degree.

Introduce in place of y the new variable v defined by
the equation y = vz, and the equation thus obtained can
be solved by (1).

Or, multiply the equation through by E-I{-—Ny’ and its
first member will become an exact differential, and the
solution may be obtained by (6).

Of the form (ax + by +c)dz+ (a'z +b'y 4 ') dy =0.
If ab'— a'd =0, the equation may be thrown into the

form (az+by+c)da:+?;'(ax+by+c)dy=0. If now

z=az 4 by be introduced in place of either z or y, the
resulting equation can be solved by (1).

If ab' — a'd does not equal zero, the equation can be
made homogeneous by assuming * = 2'—a, y =y'— 8, and
determining « and 8 so that the constant terms in the new
values of M and N shall disappear, and it can then be
solved by (2).

Linear. General form g—y-i- X,y= X,, where X; and
%

X, are functions of x alone.

Solve on the supposition that X, =0 by (1); and from
this solution obtain a value for y, involving of course an
arbitrary constant C. Substitute this value of y in the
given equation, regarding C as a variable, and there will
result a differential equation, involving C and z, whose
solution by (1) will express C' as a function of z. Sub-
stitute this value for C in the expression already obtained
for y, and the result will be the required solution.
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(5) Of the form :—ﬁ+ X,y= X;y*, where X, and X, are

functions of z alone.

Divide through by y*, and then introduce z=y'"* in
place of y, and the equation will become linear and may
be solved by (4).

(6) Mdx+ Ndy an exact differential. Test D, M= D,N.

Findf]l[dz, regarding y as constant, and add an arbi-

trary function of y. Determine this function of y by the
fact that the differential of the result just mentioned, taken
on the supposition that & is constant, must equal Ndy.

Write equal to an arbitrary constant the f Mdzx above
mentioned plus the function of ¥ just determined.

(7) Mz+ Ny=0.
Divide the first term of Mdx + Ndy=0 by Mz, and
the second by its equal — Ny, and integrate by (1).

(8) Mz—Ny=0.
Divide the first term of Mdxz 4 Ndy=0 by Mz, and
the second by its equal Ny, and integrate by (1).

(9)  Of the form f, (zy) ydz +/; (zy) zdy = 0.

Multiply through by , and the first member

1
Mz — Ny
will become an exact differential. The solution may then
be found by (6).

(10) &M——D"N, a function of z alone.
.N i fD’ M- D;N.dz
Multiply the equation through by e N , and
_ the first member will become an exact differential. The

y then be found by (6).
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(1)

(12)

(13)
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M, a function of y alone.

M efD:N—D,H
Multiply the equation through by "% and
the first member will become an exact differential. The

solution may then be found by (6).

D—M, a function of (xy).
Ny — Dy M= DN
Multiply the equation through by e/ Ny— Mz where

v =2y, and the first member will become an exact differ-
ential. The solution may thus be found by (6).

A solution of Mdxz 4+ Ndy =0 in the form of a series

can always be obtained.
, . L dy_ M
Tbrow the given equation into the form —%=—"—,
dx dy N

then differentiate, and in the result replace _= by
M a do
-3 thus obtaining a value of d_a::/ in terms of =z

and y; by successive differentiations and substitutions

dy d'y
t val 14
get values of -5, —=

If y, is the value of y corresponding to any chosen
value z, of z, y can now be developed by Taylor's
Theorem.

We have y=Jfr=f (24— )

= foo+ (o — a) a4 ES B gy =B g o,

or

, etc., in terms of z and y.

dyy | (x—x)*d’yy | (2 —2)° Ay,
y= !/o+(z—%) o+ ' dxl + 37 dx,,’+
, dy Yo Iy
where E:?:’ —de,", E-;?o—;’ ete.,
are obtained by replacing # and y by 2, and y, 1n the
values of g’! (ﬂ/ ﬂ/_ ete
de’ dat’ de’

described above.
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(15)

(16)

KEY. 817

In the general case y, is entirely arbitrary, and if the
given equation is at all complicated, the solution is apt to
be too complicated to be of much service. If, however,
in a special problem the value of y corresponding to some
value of z is given, and these values are taken as y, and
ay, the solution will generally be useful.

Can be solved as an algebraic equation in p, where p
dy
tands for —Z.
stands for B

Solve as an algebraic equation in p, and, after trans-
posing all the terms to the first member, express the first
member as the product of factors of the first order and
degree. Write each of these factors separately equal to
zero, and find its solution in the form ¥V —c¢=0 by (V.).
‘Write the product of the first members of these solutions
equal to zero, using the same arbitrary constant in each.

Involves only one of the variables and p, where p stands
dy
for —Z,
or

By algebraic solution express the variable as an expli-
cit function of p, and then differentiate through relatively
to the other variable, regarding p as a new variable and

remembering that -Z—x=l. There will result a differen-

tial equation of the first order and degree between the
second variable and p which can be solved by (1).
Eliminate p between this solution and the given equation,
and the resulting equation will be the required solution.

Of the form zfyp + yfap =f3p, where p stands for %

1e vari-
ab : aid of
th wriable.
Tl he first
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order between p and the remaining variable, which may be
simplified by striking out any factor not containing ZE or
ge, and can be solved by (4). Eliminate p between this

solution and the given equation, and the result will be the
required solution.

(17)  Of the first degree in x or y.

The equation can sometimes be solved by the method of
(16), differentiating relatively to the variable which does
not enter to the first degree.

(18) Homogeneous relatively to « and y.
Let y =oz, and solve algebraically relatively to p or »,
p standing for % The result will be of the form p = fv,

orv=Fp. If
d d

p=Jy, g‘z =fv, % = fu, x;i‘;z +v=rv,
an equation that can be solved by (1). If

v=Fp, £=Fpa y=aFp,
an equation that can be solved by (16).

(19) Of the form F (¢, y) =0, where ¢ and ¢ are functions

of z, y, and g_i, such that ¢ =a and y=> will lead, on

differentiation, to the same differential equations of the
second order.

Eliminate Z—g between ¢ = a and ¢ = b, where a and b

are arbitrary constants subject to the relation that
F(a,b) =0, and the result will be the required solution.

(20)  Singular solution will answer.
Let Z—Z =p, and express p as an explicit function of =

and y. Take Z__tl;’ regarding x as constant, and seq



(21)

(22)

KEY, 819

whether it can be made infinite by writing equal to zero
any expression involving y. If so, and if the equation
thus formed will satisfy the given differential equation, it
is a singular solution.

1
(s)
Or take .TLZ_, regarding y as constant, and see whether

it can be made infinite by writing equal to zero any ex-
pression involving x. If so, and if the equation thus
formed is consistent with the given equation, it is a
singular solution.

Linear, with constant coefficients. Second member
zero.

Assume y =¢€™; m being constant, substitute in the
given equation, and then divide through by e**. There
will result an algebraic equation in m. Solve this equa-
tion, and the complete value of y will consist of a series
of terms characterized as follows: For every distinct
real value of m there will be a term Ce™; for each pair
of imaginary values, a+bV —1, a—bV —1, a term
Ae* cos bz + Be** sinbx ; each of the coeflicients 4, B, and
C being an arbitrary constant, if the root or pair of roots
occurs but once ; and an algebraic polynomial in z of the
(r—1)st degree with arbitrary constant coefficients, if
the root or pair of roots occurs r times.

Linear, with constant coefficients. Second member not
zero.

(a) If a particular solution of the given equation can
be obtained by inspection, this value plus the value of y
obtained by (21) on the hypothesis that the second mem-
ber is zero, will be the complete
variable,
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(b) If the second member of the given equation can
be got rid of by differentiation, or by differentiation and
elimination between the given and the derived equationg,
solve the new differential equation thus obtained, by (21),
and determine the superfluous arbitrary constants so that
the given equation shall be satisfied.

In determining these superfluious constants, it will
generally save labor to solve the original equation on
the hypothesis that its second member is zero, and then
to strike out from the preceding solution the terms which
are duplicates of the ones in the second solution before
proceeding to differentiate, as from the nature of the case
they would drop out in the course of the work.

(¢) If the given equation is of the second order, solve
on the hypothesis that the second member is zero,
by. (21), obtain from this solution a simple particular
solution by letting one of the arbitrary constants equal
zero and the other equal unity, and let y = v be this last
solution ; then substitute vz for y in the given equation ;
there will result a differential equation of the second order
between z and z in which the dependent variable z will be
wanting, and which can be completely solved by (25).
Substitute the value of 2z thus obtained in y=vz and
there will result the required solution of the given equa-
tion.

(d) Solve, on the hypothesis that the second member
is zero, and obtain the complete value of y by (21).
Denoting the order of the given equation by n, form the

. s dy &y dly
n — 1 successive derivatives i o T Then
differentiate y and each of the values just obtained, re-
garding the arbitrary constants as new variables, and
substitute the resulting values in thé given equation; and
by its aid, and that of the n —1 equations of condition
formed by writing each of the derivatives of the second set,
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except the nth, equal to the derivative of the same order in
the first set, determine the arbitrary coefficients and sub-
stitate their values in the original expression for y.

Of the form

@+br Tt A+t T Yyt Iy=X,

dz~-!
where X is a function of z alone.

Assume a4+ bz =¢', and change the independent vari-
able in the given equation so as to introduce ¢ in place of
z. The solution can then be obtained by (22).

Linear; of second order; coefficients not constants.
d'y
General form o + P + Qv=R.

(a) If a particular solution y = v of the equation

@y, pdy —
@t P tw="0
can be found by inspection or other means, substitute
y=1z in the given equation, which will then reduce to
the form

d’z

2% 4 py =R,

vit +( + ) =
and can be solved by (25). Substitute the value of 2
thus found in y=vz, and the result will be the general
solution of the given equation.

(b) The substitution of y=wvz in the given equation,
where v is given by the auxiliary differential equation

dv
2—+4 Pv=0,
at’?
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and can be found by (1), and should be used in the
simplest possible form, will lead to a differential equation
in 2z of the form

d’z

E;R+IZ=R,

which is often simpler than the original equation.

(c¢) The introduction of z in place of the indepeﬂdent-
variable x, z being a solution of the auxiliary differential

equation

d*z dz

—+4+P—==0

i
the simpler the better, will reduce the given equation to
the form

ay

a2 +1Iy=3S,

which is often simpler than the original equation.

(d) If the first member of the given equation regarded
as an operation performed on y can be resolved into the
product of two operations, the equation can always be

solved. The conditions of such a resolution are the
following : let the given equation be

@'y

w—
da?

dy
+ v(—é +uy=R,
where u, v, w, and R are functions of z; this can be
resolved into

pLq) (rL4s)y=R,
dx dx

where p, ¢, 7, and s are functions of z, if

pr=u, qr+p(§—;+ s):«v, and qs+pgi=w;

and the values of p, ¢, r, and s can usually be obtained
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by inspection. We have first to solve p%+qz=}?,
by (4), and then to solve r%-{-sy:z by (4).

(e) A particular solution of the equation
@y, pdy
—2 4 p-¥ =0
aat + s +Qy=0,

can often be obtained by assuming that y is of the form
Sa.z™, m being an integer, substituting this value for y
in the given equation, writing the sum of the coefficients
of 2™ equal to zero, since the cquation must be identically
true, and thus obtaining a relation between successive
coeflicients of the assumed series. The simplest set of
values consistent with this relation should be substituted
in the assumed value of y, which will then be a particular
solution of the equation. If this solution can be ex-
pressed in finite form, the complete solution of the given
equation can be obtained from it by the method described
in (24) (a). If, however, two different particular solu-
tions can be found by the method just described, each
of them should be multiplied by an arbitrary constant, and
the sum of these products will be the complete solution
of the given equation.

Either of the primitive variables wanting.

Assume z equal to the derivative of lowest order in the
equation, and express the equation in terms of z and its
derivatives with respect to the primitive variable actually
present, and the order of the resulting equation will be
lower than that of the given one.

Of the form 3%’ = X. X being a function of z alone.

Solve by integrating n times successively with regard
to x.
Or solve by (22).
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Ufnheform%-f. Y being a function of y alove.

Maltiply by 27 and integrate relatively to z. There
will resalt the equation ’4-3 =2 f ¥dy+ C, whence
%:(2 Ydy-'—C')-. an equation that mav be solved

by 1)

-1
Of the form T¥— ;T8
dr *drt
Assame
d~ly

dz dz dz
Zo== then d—.r=ﬁ or d.r=72. .r=f!—_z+C'.

After effecting this integration. express z in terms of z

-1 -1
and (. Then. since "=:;.."|" %;-'{:F(z, C), an
equation that may be treated by (26).

Or, since
LI -2
3.::" "l’=z, Z;_-'{: zd:+c=f—+c, since d.r._.%z!-

el e R o

Continue this process until y is expressed in terms of
z and n — 1, arbitrary constants, and then eliminate z by

the aid of the equation x =f% +
2

d"y d~2y
dzr Jdz?

-2
Let :%g=z, and the equation becomes ;%";: Jfz, and

Of the form —

may be solved by (27).
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Homogeneous on the supposition that z and y are of the
degree 1, g_i of the degree 0, ;%‘:/ of the degree — 1, -...

Assume z=¢’, y=¢’z, and by changing the variables
introduce 4 and z into the equation in the place of z and y.
Divide through by € and there will result an equation
dz d’z

6 whose order may be de-

involving only z,

pressed by (25).

Homogeneous on the supposition that « is of the degree
1, y of the degree n, % of the degree n —1, %’ of the

degree n — 2, ...

Assume z = ¢’, y =€z, and by changing the variables
introduce 6 and 2 into the equation in the place of z and y.
The resulting equation may be freed from 6 by division
and treated by (25).

dy &y ..
@ &

Assume y =e*, and substitute in the given equation.
Divide through by e* and treat by (25).

Homogeneous relatively to y,

Containing the first power only of the derivative of the
highest order.
The equation may be exact.

Call its first member d——V If n is the order of the equation,

represent d:c:‘g{ by p and :;_;g by Z_I; Multiply the term
containing g_lf by dz and integrate it as if p were the only
z

a» ly

variable, calling the result U,; then replacing p by Pt
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find the complete derivative 'LU‘, and form the expression

(('!.'x"_t:ilx’l’ répresenting it by %V' If (f::' contains the
first power only of the highest derivative of y, it may

itselt be an exact derivative, and is to be treated pre-
re
cisely as the first member of the given equation % has

been.  Continue this process until a remainder .d—;%-' of
the tirst order oceurs.

Write this equal to zero, and see if the equation thus
formed is exuct, see (6). If so, solve it by (6),
throwing  its solution into the form ¥, _,=C. A
complete first integral of the given equation will be

-

U4+ U4+ 1, ,=C. The occurrence at any step

of the process of a remainder ddV“, containing a higher
x

power than the first of its highest derivative of y, or the
falure of the resulting equation of the first order above
desenibed to be eract, shows that the first member of the
fuven equation was not an exact derivative, and tkat this
wethad will not apply.

&y = (f[l

Of the form u‘, + X =0, where X is a
i

Jdy?
ar 2 [dr’

function of  alone and Y a function of y alone.  Multiply

et . -
thrvugh by L: | and the equation will become exact,

aa
amd may be solved by (330,

Singrular integeal will answer.
™ty tal} dq
Calt Y poand Y g0 and find &9, regarding p and
de 0 ! dar ¥ dp’ T e P Anaa
as the only vartables, and see whether ﬁq. can be made
p
infinite Ly writing equal to zero any factor containing p.
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If so, eliminate g between this eﬁuation and the given
equation, and if the result is a solution it will be a singular
integral. . -

General form, Pdx 4+ Qdy + Rdz=0.

If the equation can be reduced to the form Xdz + Ydy
+ Zdz = 0, where X is a function of x alone, Y a function
of y alone, and Z a function of z alone, integrate each
term scparately, and write  the sum of the integrals equal
to an arbitrary constant.

If not, integrate the equation by (V.) on the supposition
that one of the variables is constant and its differential
zero, writing an arbitrary function of that variable in place
of the arbitrary constant in the result. Transpose all the
terms to the first member, and then take its complete
differential. regarding all the original variables as variable,
and write it equal to the first member of the given equa-
tion, and from this equation of condition determine the
arbitrary function. Substitute for the arbitrary function
in the first integral its value thus determined, and the
result will be the solution required.

If the equation of condition contains any other varia-
bles than the ‘one involved in the arbitrary function, they
must be eliminated by the aid of the primitive equation
already obtained; and if this climination cannot be per-
formed, the given equation is not derivable from a single
primitive equation, but must have come from two simul-
taneous primitive equations.

In that case, assume any arbitrary equation f(x.y.2) =0
as one primitive, differentiate it, and eliminate between 1t
its derived equation and the given equation, one vanable,
and its differential. There will result a differential equa-
tion containing only two variables, which may be solved
by (IT1.), and will lead to the second primitive of the
given equation.
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General form, Pdz, + Qdz, 4+ Rdz; 4 ----- =0.

If the equation can be reduced to the form X,dr,+ Xdz
+ X,dxy + ---- =0, where X is a function of xz; alone. X,
a function of z, alone, Xj a function of x5 alone, etc.. inte-
grate cach term separatelys and write the sum of their
integrals equal to an arbitrary constant.

If not, integrate the equation by (V.), on the supposi-
tion that all the variables but two are constant and their
differentials zero, writing an arbitrary function of these
variables in place of the arbitrary constant in the result.
Transpose all the terms to the first member, and then
take its complete differential, regarding all of the original
variables as variable, and write it equal to the first mem-
ber of the given equation, and from this equation of con-
dition determine the arbitrary function. Substitute for
the arbitrary function in the first integral its value thus
determined, and the result will be the solution required.

If the equation of condition cannot, even with the aid
of the primitive equation first obtained, be thrown into a
form where the complete differential of the arbitrary func-
tion 1s given cqual to an exact differential, the function
cannot be determined, and the given equation is not deriv-
able from a single primitive equation.

System of simultaneous equations of the first order.

If any of the equations of the set can be integrated
separately by (I1.) so as to lead to single primitives. the
problem ean be simplified ; for by the aid of these primi-
tives o mnuber of vanables equal to the number of solved
equations can be eliminated from the remaining equations
of the series, and there will be formed a simpler set of
simultancous equations whose primitives, together with the
primitives already found, will form the primitive system
of the given equations.

There must be n equations connecting n + 1 variables,
in order that the system may be determmate.

Lot z, ), x;, ....., x, be the ongnal variables. Choose
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any two, z and z,, as the independent and the principal de-
pendent variable, and by successne eliminations form the

. dzx,
n equations Ii.c—' =h(2,x),2 ..., 2, ’ﬂ —-f,(:t 13 %gy ervesy L)y

..... , up to % = [ (22,5, .....,2,). Differentiate the first

of these with respect to  n — 1 times, substituting for

da:, dx, dz,
_. after each step their values in terms of
@ d !

the original \annbles. There will result »n equations,
which will express each of the n successive derivatives
dz, @z, d=x, drx,
dz’ dz¥’ dz8’ 77 dzt
Eliminate from these all the variables except « and z,,
obtaining a single equation of the nth order between
and ;. Solve this by (VII.), and so get a value of ; in

terms of x and n arbitrary constants. Find by differen-
tiating this result values for ——! dx, d’x, "z

dz’ d2?’"" dar
them equal to the ones already obtained for them in terms
of the original variables. The n —1 equations thus formed,
together with the equation expressing z, in terms of z and
arbitrary constants, are the complete primitive system
required.

——!, in terms of z, =z, 2, ..... y Zpe

, and write

’

System of simultaneous equations not of the first order.

Regard each derivative of each dependent variable,
from the first to the next to the highest as a new variable,
and the given equations, together with the equations de-
fining these new variables, will form a system of simulta-
neous equations of the first order which may be solved by
(38). Eliminate the new variables representing the
various derivatives from the equations of the solution, and
the equations obtained will be the complete primitive sys-
tem required.

All the partial derivatives taken with re%pect to one of
the independent variables.
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A singular solution may be obtained by finding ‘the
partial derivatives D,z and D,z from the given equation,
writing them separately cqual to zero, and eliminating p
and g between them and the given equation.

Of the first order and not linear, containing more than
three variables. F(&).2., ) 24y 2, Py Poy =y Pu) = 0, Where
pl=1)x‘z’ p2=Dx'z’ ..... .

Form the linear partial differential equation Z;[ (D F
+piD.FYDp® — Dy F(Dy,® + pi D:®)] = 0, where & is
an unknown function of (x;, - » Zny Prv >y Du)» 80 where
3, means the sum of all the terms of the given form that
can be obtained by giving ¢ successively the values 1, 2,
8, oy .

Form, by (42), its auxiliary system of ordinary differen-
tial equations, and from them get, by (38), n —1 mte-
grals, ¢, = a;, ;= a,, -+, ®,_; = a,_,. By these equations
and the given equation express py, py, +, p, in terms of
the original variables, and substitute their values in the
equation dz = pydx; + pydag 4 - + p.dx,. Integrate this
by (87), and the result will be the required complete primi-
tive.

Of the second order and containing the derivatives of
the second order only in the first degree. General form,
RD?z2+ 8D,D,z+ TD}z=V, where R, S, T, and V may
be functions of z, y, z, D,z, and D,z.

Call D,z p and D,z q.

Form first the equation

Rdy* — Sdxdy + Tdx* =0, [1]

and resolve it, supposing the first member not a complete
square, into two equations of the form

dy —m,dx =0, dy — nyde =0. [2]
From the first of these, and from the equation

Rdpdy + Tdgdx — Vidady = 0, [3]
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* combined if needful with the equation

dz = pdx + qdy,

seek to obtain two integrals v,=a, v,=8. Proceed-
ing in the same way with the second equation of [2],
seek two other integrals u; =a,, v;=0,; then the first in-
tegrals of the proposed equation will be

w0 = fiv, Us = [y Ve [4]

where f, and f; denote arbitrary functions.

To deduce the final integral, we must either integrate
one of these, or, determining from the two p and ¢ in terms
of z, y, and 2, substitute those values in the equation

which will then become integrable. Its solution will give
the final integral sought.

If the values of m, and m, are cqual, only one first in-
tegral will be obtained, and the final solution must be
sought by its integration.

When it is not possible so to combine the auxiliary
equations as to obtain two auxiliary integrals u =a, v =8,
no first integral of the proposed equation exists, and this
method of solution fails.
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EXAMPLES.

(1) sinzcosy.dxr—coszsiny.dy=0. .Ans. cosy=ccosz.

24y _ s _ aZ+y_
2) (=+y) da:—a' Ans. y —a tan a c.
do— 1 — I_¢; =
(3) &;-—sm (¢—0). Ans. ctn[4 3 ¢ +c.
4) L) —y+x\/a,’ y'=0. Ans. sin“i=c——x.

® G-+ L=+t
Ans. Ct“[i - %(tan“y - tan"z)]= tan'y +c.

© (- @ ern

Ans. 2a (2 4+ ) = (z’+y’)5 —2zcosc+ ysinc.

() [2V/(2y)—=z]dy +ydz=0. Ans. y=ceVi.
®) (@—y)+2my2=0. Ans. e =c.

) 2z—y+1)dz+(2y—z—1)dy=0.
Ans. 2 —zy+y'+z—y=c.

Bi“2x_ Ans. y=s8inz — 1 4 ce"ir=,

(10) :—Z+ycosz=
(11) (l—a:’)(di—i—xy=aa:y’. Ans. y=[c/(1—2*)—a]™"
(12) 2y (1 +ay) E=1. ano Lo ype T

(13) (@ +9+ ) Wt a( +— o) =o0.
Ans. (2847 - 20 (P =) =c.
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zdy — ydz _ =0. Ans. f—""—"—’

14) zdz + yd 2 aY_,
(14) zdz+ ydy +— e 2 -i-l;anz c.

(15) (Z—g)’—%}o. Ans. (y—alogz—c) (y+alogz—c) =0,

(16) ( ) +2Jctn.1:———_/’

d= Ans. (usm g—«:)(;lcos’__ )__ 3
(17) "”f("-” )=x(x+y)-
Ans. (2y— 2 —c)[log (@ +y—1)+z—c]=0.

(18) (d”) — @+ wy+y*)(%)’+ @y+ay+ay) X —zyp=o.

2 1 2
Ans. (y—=— == =T _¢)\=o.
ns (y 3 c) (x+y c) <logy g —° 0
(19) l_yz_l‘ an _2ydy ¥ _o.
2?2 /\dx x dx ot

Ans. <_1/ + logaii'—\—/;‘z—"_i — c) (y - logw — c) =0.
Yy

2

(20) y=ux (IZ+$—~;{—<3£>. Ans. y=cx+c—c.

Singular solution, y =£x_-:]l’

(21) y= y(‘lu>+‘ ZZ Ans. y¥=2cx 4.
- ty dy
22) | 1—(°¢ = 2 4.
St [ (m)]” =y~ )dm

=0.

( { +
(23) 3 /._2.1'”/+J <(IZ> Ans. y¥*=2czx +¢.

2
(21) x"(d”> +:c’y'l~'l+a"=0. Ans. G4 cxy+a*z =0,
dx dx
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d d
(25) fl:z —-'l\’]+2x-'/- y=0.
<d’”/ T Ans. (b+y)'=4az, f(a)+b=0.

(26) =~ 3 =f[y’—xygz]- Ans. yfj’ _ =5, f(a)+b=0.
dz

d‘y &y, &y L
@7) a4 gt 54, +y=0.

Ans. y=(c,+ a1+ ¢s2° 4 ¢s2°) €.
(28) — d"/ 2kd'/+k’J es. Ans. y= (c,+c,z)e‘=+(k g

dy

dty
(29) dxt 2da:’ y

Ans. y=§+(A+Bx)cosx+(0+ Dz) sinz.
+4y=-¢*cosz.

= Ae ¥ -z B2\ i
Ans. y= Ae +c.’[ B 2O>cosx+(0+20)smz:|.

d'y (l“y @y
31) — =28,
S durt d:z:3 +d:c*

Ans. y= (A + Bzx)e* 4+ (C+ Dx) +1227 4 32 +

(30) T d”’ 23”

.L":c“_

(32) ‘rl’ 4g+4y o,
Ans. y=(A+ Bz)e*+§ (227 + 42+ 3).

(33) +y—cos:r Ans. y= Acosz+ Bsinz—i-gsinx.

(34) 8Y 4 4y = zsina.
ast Ans. y= A-Z cos2x+<B—£)sin2z+x-
32 16 8

5) 2TY_ % Loy
(35) z’w :cdx+2y_.xlog:v.
Ans. y= Ax cos(logx)+ Bxsin (logz) + = logz.
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(36) z'J x'—l+2z" 2y =2*+8z.
dzx
Ans y= z(A+Blogz)+C’z’+——3z(l+££g—-’)

By, 2dy 1 s
37) — 4= Z— =0. . Y =-(Ae™= .
(37) n*y=0 Ans. y -~ (Ae™ + Be ™)

(38) d’y+tanzdy+cos’z y=0.
Ans. y = Acos (sinz) + Bsin (8inz).

(89) (l—x’)’%+y=o.
Ans. y=v1 —a:’(A+Blog:—"—'—z)-

(40) (1+x')d’y 222 4 2y=0,
Ans. y=Bz+ A (1-12").

dy =z dy
(41) 24— +——y=z—1.
& Tt Ans. y= Ae*+ Bz — (1 +27),

Ty
(42) @

—2z(1 +:c)%—';’:+‘2(l+x)y=a:’.
Ans y=Ame‘+Bz—§.

(43) sin’xﬂ—2y=o. Ans. y=Actnz+ B(1 —zctnz).

ey,
(44) o aa’l g.cy e'( +loga:).

Ans. =Aloga:+e’logx+B(loga: Az _ )
logz

(45) ﬂ—?(n a:) dy-}-(ﬂ’ :a>y=e"'.
B z
A A —= .\
e y= e"( t o +2(2a-—l))

Ans. y =2z (4 cosaz+ Bsinazr).
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47 T4 20 4pay=o. .
. Ans. y=e* (Acosz\b + Bsinz VD).

(48) LY _ 4z W 1@z —s)y=e.
az Ans. y=e* (Ae" + Be~—1).

(49) (l—z’)%—4z%—(l +a)y=z
lx,(z+Acosx+Bsinz).
dy_1 dy_ z+zZ-8 _
G Gzat 2w V="
Ans. y= “;(Axf+§>.

(51) +2nctnnz + (m* —n*)y=0.
Ans. y= (A cosmz + Bsinmz) cscnz.

Ans. y=
ne. y=1

(52) (x'-l)——+a:-¥ dy=0.
Ans.y A(@+VZF 1)+ B(z—Vz&* —1)%.

Py, 2dy @ _ : — Asin® a
(58) dx‘+w da:+a:‘y_0' Ans. y_Asmx+Bcosz

&y 3:v+1_g 6(z+1)
SO R +y[(z—l)(dw+5)]’

Ans. y=[A+ Blog((z—17(8z+5))]V(z— 17 (8z+5).

(55) (1— )—-x—l_ay=o.
dz -1 -1
Ans. y=Aealln :+Be—cdn s

Y Lz gy =
(56) (1+az’)dz'+a:cdx nly ‘0. )
Ans. y= A(NT+ a2 +2Va)" + BWT + az + zVa) Vo

(7 (@—1) (z—2)g;g—(2x—3)%+2y=0.
Ans. y=c(z—2)'+c' (z—2)[(»—8)
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(58) (3—x)d’—y—(9—4z)9¥+(6 —38z)y=0.
dz* dz 183 /5 21
Ans. y-ce'+c'e"< + 7 — 2::‘).

(39) (@ =) TL— 822 _12y=0.
Ans. y=

@y 2dy_ (. 2\ _
(60) Z5+2 dz+(n x,)y—O-

¢ to ,(a’+3z’)
@2y (@2

Ans. y =£2[A (sinnz — nx cos nz) 4 B (cos nz + nx sinnz)].

(61) %4.1 %:0. Ans. y=clogz+c'.
x
(62) ( a:’dy+x’y>(py+4x2( >+2xy_5! 0.
Ans. 4 cxy=c'z.
(63)( +2y’dJ>d2J+ (5 >+3de+J 0.

Find a first integral.
dy of Ay

Ans. 2> = =c

ns, 23 +y(dz) tay=c

(64) f‘i“h» +(2ay — l)dy+J~

az Find a first integral.

Ans. x’g?f—x%-l-zy‘:c.

E/i—y—b-'.zd— =0. Adns. (r—a)(y—>b)(z—c) =c.

(66) (y+2)dz+dy+dz=0. Ans. € (y +2) =e.
(67) %"+4x+i’= , d”+3y-x_o

Ans x=ce s—g, y=

N
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(68)——+m’x 0, %’l—m’z=0.
Ans. = Asinmt+ Becosmt, z+4y=Ct+ D.

- . . - = .
(69) D,z :c_L-l-z Ans. e v(z+y+2)=¢y
(70) 22D,z + y2D,2==y. Ans. P=zy+ ¢ Q)
(71) D,2.D,z=1. Ans. z=am+£+b.

= — sl )
(72) 2'D2rz+2xyD,D,2 4 y’D}2=0. Ans. 2= z¢(z)+¢(£)

(78) (D,z)'D}rz—2D,zD zDDz+(D 2)'Dj2z=0.
Ans. y=2z¢z+ yz.

(74) D,2.D,D,2— D,z.D.}2=0. Ans. z= oy 4+ yz.
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CHAPTER V.
INTEGRATION.

74. We are now able to extend materially our list of formulas
Jor direct integration (Art. 55), one of which may be obtained
from each of the derivative formulas in our last chapter. The
following set contains the most important of these : —

D,logz = é gives f,%: logz.

D,a*=a"loga ¢ f.a"loga=a*

De=e¢ “ fe=e

D, sinz = cosz ¢ f,cosx=sinz.

D,cosz = — sinz “  f(—sinz)= césa:.

D, logsinz = ctnz ‘¢ f.ctnz=logsinz.

D,logcosz= — tanz ¢ f.(—tanz) =logcosz.

D,sin"'z= S “o L — 1 _sinz
NIFS) (A==

D,tan"'z= ] _:‘z, . L#:t&n"x.

D, vers™ 'z = 1 A 1 = vers—'z.

@z —2) V(@a—a)

The second, fifth, and seventh in 4
written in the more convenient forms,
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a’
loga

J.sinz = — cosz;

St = ;

Jitanzx = — log cosz.

75. When the expression to be integrated does not come under
any of the forms in the preceding list, it can often be prepared
Jor integration by a suitable change of variable, the new variable,
of course, being a function of the old. This method is called
integration by substitution, and is based upon a formula easily

deduced from D, (Fy)=D,Fy.D,y;

which gives immediately
Fy=/.(D,Fy.Dy).

Let u =D, Fy,

then Fy=/f,u,

and we have Sye=/L(uD.y);

or, interchanging x and y,
Sou=/[,(uD,z). [1]
For example, required /. (a + bx)".

Let z=a 4 bz,
and then S(a+b2)*=/.2"=[,(>. D,=), by [1]:
but * x=£—g,
b b
1
D, ==
'm b
1 1 42
R [ = — .
hence Ji(a+ bx) b‘f' bnrl
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Substituting for z its value, we have

‘—l ga+bx)n+l
Ju(a+02) b w41

EXAMPLE.

Find /, - ; = Ans. ;-)log(a +0z).

76. If fx represents a function that can be integrated, f(a+ bx)
can always be integrated ; for, if

2=a + bz,
then D,z = %
and S S(@+bm)=[fe=[SDx =1L .
ExampLEs.
Find
(1) /.sinaz. Ans. — %oosaa:.
(2) f.cosaz. Ans. ésinax.
(3) [f.tanaz.
(4) foctnaz.
77. Required LW’L—_?-)'
11 1
@@= et

Let

then
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1 1

- z = L 4 D'z
af\’ — =k = e T
: a
1 i, g%
f.\/_—(l_ & sin~!'z = sin
ExaMPLES.
find
1 z
W) fogi Ans. tan1.
. z
(2) Lm Ans. vers“(—l-
. 1
. dff—— .
78. Require f'\/(w’-}-a’)
Let 2=z 4+/(2*+af) ;
then z—z=+/(F+a?),
A—-22x+22=2+ a?,
2zx=22—al,
_Z=a
T2z !
N _Z—a_ 2+ a?
VE@E+a)=z—x=2 = = 23"
Z24a
D,x= Y
‘/;\/(x’+a’) —f‘z’+a_J;£+ 3 Di
2z z’+a 1
=fira 2 =/i; =logz=log(z+ V' +a).
EXAMPLE.
. 1
Fmdﬁ\/(TaT)' Ans. log(z +Va* —ab).

o
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79. When the expression to be integrated can be factored, the
required integral can often be obtained by the use of a formula

deduced from D, (wv)=uD,v+vD,u,

which gives w=f,uD,v+ f,vD,u

or JouD,v=wv— f,vD,u. (1]
This method is called integrating by parts.

(a) For example, required flogz.
logz can be regarded as the product of logz by 1.

Call logz=u and 1 = D,v,
1
then D.u= =
T
v=2;
and we have

JSulogz=f.1llogz = f,uD,v = wv— fvD,u

=zlogz —f,§= zlogz — x.

ExaMpPLE.
Find /,zlogz.
Suggestion: Let logz=u and = D,v.

Ans. %x’(logx — %)
80. Required f,sin’z.

Let u=sinz and D,v =sinz,

then D,u = cosz,
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but cos'z =1 — sin’z,
80 Jocog’z = f,1— f,sin’z =z — /sin’2
and Jo8in’z = z — sinz cosz — /. sin'z.
2/,sin’z = 2 — sinz cosz.
JSosin*z = } (2 — sinz cosx).
ExawmpLEs.
(1) Find f,cos’z. Ans. %(z + sinz cosz).
(2) J.sinzcosz. Anas. E’_';_”

81. Very often both methods described above are required in
the same integration.
(¢) Required f,sin~'z.

Let sin~lz =y,
then z=siny;
D,z = cosy,

Jesin~lz = [,y = [,y cosy.

Let u=y and D,v=cosy;
then D,u=1,
v=siny,
and

JSyycosy=ysiny—/, siny=ysiny+cosy=xsin"'z+ /(1 —2%).

Any inverse or anti-function can be integrated by this method
if the direct function is integrable.

(0) Thus, S re=Ly=LyDSy=yly— LSy
where y=r"1z.
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ExaMPLES.
(1) Find /,cos~'z. Ans. zcos~'z—./(1 —2%).
(2) /f.tan'z. Ans. ztan~'z — %log(l+ ).
(8) Jovers~z. Ans. (z—1)vers~iz 4 /(22 —2*).

82. Sometimes an algebraic transformation, either alone or in
combination with the preceding methods, is useful.

(@) Required [, b

and, by Art. 75 (Ex.),

zZ—a

1 _1 z—a
Jozto= - [log(@—a)—log (s + )] = 5_log

z+a
® Reqmredf,\[(“"‘)

z

‘J(1+x)= 1+ _ 1 + e

11—z J(A=2%)  (1—2Y) J(a—a)’
/;\/(l_z,)—sm x.

./; (1_ P can be readily obtained by substituting y = (1 — 2%),

and is —/(1—2%);

hence f\/(ii-z)—sm“x—\/(l—x')

(¢) Required [~/ («®—2%).

. _o @
V== s = T~ T
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- a’n s
ol SN = 0 Gy V(a’ '
whence  f,+/(a'—2*)=a’si “: f,\/ (a’ oy s by Art. 77;
bt (@) = e (@ =) g

by integration by purts, if we let
u=+/(a®*—2') and D,v=1.

Adding our two equations, we have

2/i(@ —2) = 2+/(a* — 2) + a'sin1Z;

and < Sl (@ -2 = %(x\/m+a’sin“§)-
ExampLEs.
Find
(1) fiv/(@ +a).
Ans. -}2 [z+/ (2 + «*) + a’log(z + Vz* 4+ a?) ).
2) [V (@ —a).
Ans. % [zv/ (2 — @) — a’log(z + V' —a') |.

Applications.

83. To find the area of a segment of a circle.
Let the equation of the circle be

972+.7/2=02a

and let the required segment be cut off by the double ordinates
through (z,,) and (z,y). Then the required area

A=2/y+C.
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Y o
@

&
3 {
T
From the equation of the circle,
y=+ (=2,
hence A=2/f~/(*—2*)+C;

and therefore, by Art. 82 (¢),
A=z /(@ —2*)+® sin"; +C.
As the area is measured from the ordinate y, to the ordinate y,
A =0 when z=12,;
therefore 0 = 29~/ («*—2,7) + a?*8in~! g +C,

E?
C= —xg~/(? —a?)— a’sin"zo’

and we have

A=z /(a*—2*)+ a’sin"g — zy o/ (@ —a?) — a?sin” ":‘—:
If 2= 0, and the segment begins with the axis of Y,
A=z /(C—2)+ u’sin—'z-
If, at the same time, = a, the segment becomes a semicircle, and

a r=al
2

A=a+/(a®— 2)-{-a,’sin"(—',=

The area of the whole circle is ra?.
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ExAMPLEs.
(1) Show that, in the case of an ellipse,

a:' z/’
—_— .'_...-—'_.l,
a’+b’

the area of a segment beginning with any ordinate y, is
A= l’[x V(@ = 2) 4 asin'Z _ 25/ (a?— ) — a’sin"i"].
« a a

That if the segment begins with the minor axis,

b Y/

A=- P2t *sin—!2 |.

u[a:\/(a ) + a*sin a]

That the area of the whole ellipse is zab.

(2) The area of a segment of the hyperbola
e _v

@l
is = ey (@ - a) - d'log (e + V=)

— %/ (%'~ @) + o’ log (2 + V' — a%) ).
If ¢y = a, and the segment begins at the vertex,

A= z [z+/ (& — a?) — a*log(z +V2* — @) + a’loga].

84. To find the length of any arc of a circle, the coordinates
of its extremities being (zy,y,) and (z,y).

By Art. 52, s=/,+/[14+ (D,y)7].
From the equation of the circle,

z’+y"=a’,
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we have 22+42yD,y=0,

1+(Dyy=2ty_2

T Y
8= f, =afi—— (a, o =asin'2+C. (Art. 77.)
‘When T =2, 8=0;
hence 0= asin—‘:f—:+0,
C=— asin"‘?,
and 8=ua (sin“g— sin—‘%’)-

A )

If ,= 0, and the arc i3 measured from the highest point of the
sirel )
circle, s=asin~'_

If the arc i3 a quadrant, z=a,

s=asin"'(1) = ”;,

and the whole circumference = 2= a.
85. To find the length of an arc of the parabola y* = 2 mx.
‘We have 2yD.y=2m;

D,y:ﬂ;
Y

VI1+ (D)1 =\/(""yf f) =1y 4



76 DIFFERENTIAL CALCULUS. [ART. 85.
8 =fxB v (m + y’)-|=f.[§ (mE 4 ) D,z]:

1
D= D=

, by Art. 73;

3|

s= L fVmit =L [V g+ milog(y + VT )1 +C,

by Art. 82, Ex. 1.
If the arc is measured from the vertex,

8=0 wheny=0;

0= 2Lm(m’logm)+0,

C=— %mlogm,

and = % [W + m]ogg%,n’-'-y’).].

ExaMPLE.

Find the length of the arc of the curve 2* = 273* included be-
tween the origin and the point whose abscissa is 15.
Ans. 19.
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I. FUNDAMENTAL FORMS.

1. fadz = azx.

2, faf(z)dw=aff(x)dx.
M—
8. f-; =logz.
4, f dr = —E—H—, when m ie different from =1,
m+1

50 frdz':f.

dz

7. =ta -1 .
T n-lz

8. f dz =sin“z.
V1 =2

9. dz =sgec'z.
Ve —1

10. f dz = versin—!z.
V2z— 2

11. fooszdz =sin®.

12. fsinzdx= —Co8Z.



4 FUNDAMENTAL FORMS,
18 fctnzdz=logsinz.

14. fnnxdz=—logcosz.

16. ftanzseczdz=aecz.

16. fsec’zdz=tanz.

17. f csctzdz = —ctnz.

In the following formulas, %, v, w, and y represent any
fanctions of z:

18. f(u+v+w+etc.)dz=".udx+.fvdz+fwdz+etc.

l’d-fudv=uv—fvdu.

190, uggdz =uy— vﬂ‘-dx.
dz dz

0. froa= LY
dz
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II. RATIONAL ALGEBRAIC FUNCTIONS.

A.— ExPressioNs INvoLvING (a + bx).

The substitution of y or z for x, where y=22=a+ bz,
gives

f(a-}-bx)"dx——fy“dy
2, f 2(a+bo)"da=1, f v (y — a)dy.

28, f o (@ +ba)de =1 f v (y — aydy.

. f(a+bx)" b"‘*‘fiy——;‘m.

@ _ 1 (z2—b)™dz
2. f > (a+bz)~ a~ ’f -

" Whence

dx 1
26. = - .
fa-}-bx blog(a + bz)

— 1 Y
2. f(a +02)'  b(a+b2)

_ 1
8. f(a-}-bx)’— 20 (a + bz)?

29. zdx
a4 bx =

[a+ bz — alog(a +dx)].

zdx 1 a
— =] b.
(a + bzx)? bx[og(a+ z)+a+b:c



6

s1.

8. fa:’(a+bz) az @ E

RATIONAL ALGEBRAIC FUNCTIONS.

zde _1f 1 + a
(a+bz)* ¥| a+dz 2(a+bz)

JEE = L1+ by — 20(a-+b2)+ o' log (a + ba)).

' ddz _ 1 a’

dz a+bz
fa:(a+b:c) alog z

de 1 _1,,,0+0z
z(a+bz)’—a(a+bz)

+_

a+b:c.
z

B. — ExpressioNs INvoLvING (a 4 ba®).

dz __ 1 10g\/5+z\/—b
a+bzr* 24/"ad  Va—zV—0

x 1 dz
(a+dz*)* 2a(a+ba*) +§¢—1 a+ o

» if a>0, b<O0.

=1 z 2m-—1f
(a+ba®)1  2ma (a+ bz*)"™ (a+ba;’)‘

48. zdx
fa-}-bx’ 20 l°g(""+ b)

N\
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zdz

(a+bz!)-+l 2f(a+bz)-+l’ where g2=2".

44,

dz 1 2
1. fz(a+bz’) =2a %t

' Z'dz _z_a (~ dx

atbz b bJatba
1 b de

fz’(a+bx‘) az a b—-fTa:'

zdz___ —Z +Lf__.
(a+ b))t 2mb(a+ba*)™  2mbJ (a+ ba')™

 Srarmr s marmr s e
w 5 -—[i g(—g——)—“”” )+V§tan—1%_§l‘],

a+br* 3a Kk —kx + 2*
where bk*=a.
K — kx + a2z—k
510 3m y
a+bz’ 3bk[’} g( Gray )tV ,ﬁ/g]
where bi*= a.

dz 1 ™
52, f_____=_.1 - .
z(a+bx*) an Oga + b=

f(a+ba;-)-+x lf(a+bx*)- bf(a...bz-)-u

wdr 1 z"" a rdr
(a+bz*)**  bJ (a+bz")* bJ (a+ bar)rH!

54,

f _1 dz b f
z(a+ b:a:")'H ™(a+ by '(a + bar)rt




RATIONAL ALGEBRAIC FUNCTIONS.

X e .IIINI . X0 _ X,
zp a X 301 zpz,) "9 a@»\om q+mg 69

IN ub m/‘@: —.rlN a|>+&+§w b— A N
ER A A .‘, '0>b woya G e BT =25 ) v8e
.Nm b X . . m\( u\(lN
ae.\‘,ow.f v-+ao~ =w) 0 0<b uays T aiar et |.“

uayy ‘9 —owy=>b pus @ +2q+v=X ]
* (%0 + zq + ») DNIATOAN] SNOISSAUIXY — *))

(14+d) up Y

._Ha?tfs + ) —..u.%? + du + w) + 14(29 + 1) > IH_ ;

._”3.?3 + ) _uin® .\ Q(u+ du + w) — (29 + ) ..gH_

b = + ),
it w zp (29 + v), .h.\‘ ‘9

I
(du+w)q
I P,

._”savkka + ), .n.‘.s% + (29 + v) ..aH_

._HQ.A.S + ) -..s,\,e? —w) — (T +0)e
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6. (2d__bz+2a_ b (dz
*J X X qJX

o4 -xdz=_2a+bz_b(2n—1)f_d_z_.
* Xu+l ann Xu

z b —2ac ("dx
=%_ 2 log X + o,
fxd” P 1°g 2¢ JX

x? b —2ac)z+adb , 2a dz
68 ffdx §—————+

cqX : X
& arde ! _n—m+41 b 2~ dz
*J X @Cn—m+1)cX” 2n—m+1 X
m—1_ a x“’dz.
2n—m+41 ¢ Xl
dz ll z? b d:v
a:X 2a gX 2a¢J X
dzx b X da:
o | s==-—=log= —
- 0 FX 2a B <2a’ )
70 fda: - 1 _n+m—l.l_) dx
* J X (m —1)axz™'X" m— aJ g=-1XnH

_2n+m—l.g dz
m—1 aJ z= 3X1

D. — RaTioxar Fracrions.
Every proper fraction can be represented by the general
form :
J(@) 9@+ g2+ gyt -t g,
F(x) ~ 2*+ka" '+ ka4 +k,

a, b, c, etc., are the roots of the equation F(xz)=0,
that

F(z)= (2 —a)" (2= bY (2 — ) -+
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J(=) 4 A, 4,
then L= Tt e +_A._

P e T B A s

(=0 (z-b)*" " (z—d)** —-b
G C, G C,
(z—c) (:z:—c)"l + (xg—c)? + +——¢_:

Where the numerators of the separate fractions may be
determined by the equations

(m-1) (m-1)
ua_ ¢2—(b)_’ etc., ete.

(m-1)1" B.= (m—1)!
& (2) =LEUEZ=) o () 2 LENE=B) o ete
F(=) F(z)

If a, b, ¢, etc., are single roots, then p=¢g=r=...=1,
sod  r@) _ 4 B, C
F(z) z—a z—b z—c
4=L@ p_JO) ..

where F'(a) = (b)’ ete
The simpler fractions, into which the original fraction is
thus divided, may be integrated by means of the following

eee

formulas :
71 hdz - hd(mz + n) — h .
*J (mz+ ) m(mz+n)t  m(1 —1)(mz+n)?
hdx h
2. — =] .
= mr4n m og (ma+n)

If any of the roots of the equation f(x) =0 are imaginary,
the parts of the integral which arise from conjugate roots
can be combined together and the integral brought into a
real form. The following formula, in which ¢ =\/——i, is
often useful in combining logarithms of conjugate complex
quantities :

8. log(zty)=tlog (s +y) % itanL

PN
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III. TRRATIONAL ALGEBRAIC FUNCTIONS.

A.—ExpressioNs InvoLviNg Va + bz.

The substitution of a new variable of integration,
y= Vva + bz, gives

4. f\/a-}-bzdz::%b\/(a-f-bw)’.

2 — Ta + bz)3
75. sza+bmdz=_3(2“ 3bi""5);’/(a+bz)

—_ (a+ bz)?
0. [oVatina =200 2ot 1307) V{a+bz)

77. f——““:‘bxdz=2\/a+bx+afzﬁ-
a X

78 _dx 2 ‘\/u_-f-_bx.

" JVaxiz b
zdx 2(2a —bx)
79. =— Va + bz.
Va+ bz 35
2 b
. otdx "=2(8€! —4(}bx+3b’x’)m
Va+ bz 1Y
o [~ Liog(Yetbi= Ve g 0,
zva+bxz Va \Va+bx+ V.
82. f = _ z_tan"‘\/a—'*'—b‘f, for a < 0.
za+bz V—a —a
88 dz _‘\/a+bx__b_ dr

) “"Va+b:c= ax 2a 1"\/u+bz‘
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3in
84. f(a+bz)*;dz=%fylz-dy=2(a+bx2 :

b(2tn)

4ia tim
6. [r(artayic=2f@HI0T _a@tin’

™ dz 2:.“\/a+ 2ma = ldz

Vatbz @m+Db  @m+1)bJ Vayez
__ _Na+bx  (2n-—38)

8. frm" (n—1)az** (2n—2)a.ft‘"

88. fi“—*'-%li‘f=bf(a+bz)"%'dz+afw"-)zdz.

o 1 @ b s

z(@+bz)7 % z(a+4br)T (a+b2)7

86.

B. — Expressions® InvoLviNg V& £ a® aND Va® — 2.
90. f\/a:’:t ddz=4[zVZ L @ L atlog(z+ V@t d')].

91. f Va—ddz= }(xx/a’——x’ +a sin—‘%’).

92. \/;x =log (z + VZx &¥).
93. dz_ _ sin'Z
a® — a

dz 1 a4 Va*+ 2*
=5 gt T
W S (U )
06, [VOEZ 4y VD —aloglt VI ES,
x z

*These equations are all special cases of more general equations given in the next section.
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Q/ H
97, _udz_—_- - a’_acos‘lg.
x
zdz ——3
98. =t Va't o
Va2
29. 2ds_ _ yE—a,
3 — a?

loo.fa:\/z’_:ta—’dz=§\/(_z":—t—¢7’?.
101. | z2Va' —Fdz = — V(@@= 2),
102. f CET IR 2]
=}[x (@£ d)i+ %’-’x/?:—a’ + §2i‘log(a: +\/xTa’)],
108. | V(@ —2)'dz

dz _ =z

"”'fx/w ta) OVFrd
dx _ z

105.f\/(2!7_x,—)a - a’ ,—J’ —
zdz -1

08. =

! f\/(z’:ta’)’ vVoi + ad

zdzx 1

107.

V@—7) Va—-2
108, | zV(F £ a’)’dz =34V (Z £ &)
109. | zV (¥ = 2)'de= —}Vid 27
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no,fz’\/z’:t aldz
e 2
=‘£\/(zi + a:)a;‘_‘g(m/??? + a*log (z + V¥ £ a¥)).

111. f PNE —Pdz
=- —\/(a’ —2%) 4 (z\/a’Tx’ +at sin"‘z).

112.f o dz ;Va:’:t a’:F——log(x+V %+ a’).

V&t a?
dz a® »
118. ———\/ z’+ sm"
Vat =2
dz Vo + a?
ll‘o —3
f 22t at T

115.f dz____Va'-2
ad—2 atz

116.f"x’i:’“’d’”=_‘/“’;i“ +logz + VFE @).

ll7.f\/a— Vo =22 a%,

=———" —8in
x
?dx -
118. = + log (z + V' £ dY).
V(#£*ta?)® Va'tal B( )
119, odw = z — ain’lg.
V(@@—=2)? ai—d a

C.— Expressions InvorLving Va + bz + oo

Let X=a+bx+4cx’, g=4ac—10b% and k= 4qc In order

to rationalize the function f(z, Va+ bz + cz*) we may put
Va + bz + cx*= VEcVA + Bz + 22, according as ¢ is positive
or negative, and then substitute for # a new variable z, such
that




IRRATIONAL ALGEBRAIC FUNCTIONS. 15

z=\/A+Bx+:v"’—z, if c>0.

VA+Bz—2—VA it c<0and-2>0.
2 -—C

=

2= :c_—-g, where a and B are the roots of the equation
a—

A+4+Bx—22=0,if c<0 and -2 <0.
—C

By rationalization, or by the aid of reduction formulas, may
be obtained the values of the following integrals:

dz _ 1, +am/2+——) if ¢>0.
f g( Ve
121, (% _ 1 sm"‘<_ 2“"’), if ¢ < 0.
\/_X' V=c » — dac
122, de  _2(2cx+1b),
XVX VX
d 2(2m:+b)( )
128, +2k
XiVvX  8¢VX \X

124, (9= =2(2cx+bx/i+2k(n_1) dz__
X*VX (2n—1)qX“ 2n—1 J x»1JX

4c 2k vXx
l28.fX\/'—dz £2w+b)\/X<X+ >+83k! 5_4;_
127'fx’fzdz=(%@< X+ 4k+8k’) ;é’@f—d-”:,
N

129. a:d:n__ __f\/x



16 IRRATIONAL ALGEBRAIC FUNCTIONS.

130 zdx =_2(b:+2g)
VX gVX
rdx VX ] dx

W) vz @n-Dex 2 VX

“dz z _ 8% 30— 4ac (Cdx
132. =({—-— VX422 — 2
vXxX (

2¢ 4¢ 8¢ Jyx

_(2b*—4ac)z + 2ab dz
138. +
A\/X cqVX CIVX
134, _(20'—dac)z +2ab 4ac+(2n-—-3)b’ dz

x-\/_ (2n—1)gX* WX (2n—1)cg J x1VX

2dr (2 5b.z 5b0* 2a 3ab 50
ns.f (c 12¢ 180 34 (w 16&).!‘{3
1u.fzs/fdz=£3‘£_i'-2%fxlidz.

- 3./ %©v
18, frXVdr== Vx-}’-fxﬁda
Sc¢ 2¢

188. f:x dr _ X"VX _b (X"dz
(2n+1)c "2 ‘\/X

: 5B\ XVX , 50 —4ac
dr="_z_5b
139.fz‘\/1 2= 60) i T 16z VXdz

110 fx’X" _2X"VX (2n+438)b (zX"dz
' 2(n+1)c 4(n+1)c vx

X*dz
_2(u+1)cfr'
2 =(2— Tbxr 350 2a VX
mf VXdz ( Dz 308 20X

3ab TV
+ zs*m)f*’m-



IRRATIONAL ALGEBRAIC FUNCTIONS. 17

142.fd“ -1 (‘/—:“/— f/E)’ it a>0.

dx 1 . bz 42a .
148. = ———3sin"! ) if a<O.
zvX V—-a Vb —4dac ’

l44.f dz =-—2\/X, if a=0.

145 dz___ VX 1( dz b (_dz |
zX*VX (@2n—1)aX" " aJ gx*1W/X 2a Xx~X
148 e __VX_ b dz
2VX az VX
VX dz dz
147, =vX + .
f \/~ fz\/f
Xn Xu Xu ldz b Xn—ldx

148,

o~ (2n—1)\/—

149._['_\/%”_”_—__‘/1?4.” m/_.,. f\/_

arde _1(C etz b (Cenldz _a (Camtde
X*VvX ¢’ X~1VX X*VX ¢/ X*vX

160.

lsl.fx“X" z““X"\/_ _@n42m—1b(z=1 X"dw
(2n+m)c 2¢(2n+m) 5 ¢
_(m—=1)a (2= *X"dx
Entmy) VX

162 e _ VX
* Z‘X"\/X (m—l)aa:"“‘X'
(2n4+2m—3)b dx (2n4+m—2)c dz

2a(m—l) r-IX"\/X ('m—l)a w-—’xn\/z
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Xodz XWX (2n—1)b (X*'dz
Vv (m—1)z " 2(m—1)J 2 1VX
(2n—1)c (X" 'dz
+ m—1 fr-’\[i

168

D. — MISCELLANEOUS EXPRESSIONS.

154.f‘\/2az—:t’dx=z;a\/2az_x'+9§’8in-lL}E.

185. L a2 = versin—'Z.
V2az — o a

dx _ ’z—l
lss‘f(a:-i-l)\/:?——l—-'- z+1

dz z+1
167, = .
f(g_l)\/x’_l . z—1

158'f 1+ —sinte— Vi—2

1—=2

159.f\/§_‘_;dz= V@+a) (@+b)
+ (v —b) log (Vz+ a+ Vx + b).

dz . r—a

. _— =2 g ——.
e R =
dz _2 o BT
16l.~f\f(¢1,+b:t>) (a —Bx) \/b??am aB + ba

mg.f{/a+bxd:c=z33\°/(a+bx)‘.

dzx 8 /353
168. = *\/ a+ba:).
YVatbz 20 '

N\
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zdz __3(3a—2bz) 37—
164, Vot 0w Vv (a +bz)%.

dz__ _ 2 ooa(a), :
l“.fz\/z‘—a’—a"sec (a)

dz 1 V@t —a
166, | —2& 1 g¥e +Z —a,
fx\/x"-l—a’ an e fzr+a



20 TRANSCENDENTAL FUNCTIONS.

IV. TRANSCENDENTAL FUNCTIONS,

167.fsinxdz=—cosw.
lBS-fsin’:cdx:—}cosz sinz + §2.

169, f sin*zdz = — }cosz (sin'z + 2).

l70-fsin"avd:c = sin” 'z cos +02= 1 sin*?zdz.
n n
l7l.fcoszdz_—.. sinz.

l72.fcos’a:dx= 4sinz cosz + .

l78-fcos’a:da:= }sinz (cos’z + 2).

l74.fcos“a:dz= 1cos"“:z: sinz 4+ 2= lfcos" 2xdz.
n n

l75.fsina: coszdx = %sin’x.
lmofsin’x cos’zde=—§(sindx —x).

m+1
l77-fsin:c cosmzdr=—25_"2,
m+41

sin™*'z

m+41

179'fw8"z sin"xdx: C_O_S"-lxﬁ__in::_x
m<4n

m—1

m 4 n

. sin®'a cos™*'z
180. fcos"'x sin"zdr = — —————=
m-4n

+ 1= 1 foos"z sin*~*zdz.
m<n

178, fsin"‘z cosxdr =

cos™*z sin" zdz.




TRANSCENDENTAL FUNCTIONS. 21
181. ;‘cos zdx _ cos™*lx _m—n+2 ("cos™zdz
sin"z (n—1)sin" ' n—1 sin"%z
182 fcos a:da: cos™ 'z —1 (Ccos™*zdx
sin"z  (m—n)sin* 'z m—n sin"z

m(T_2\d(T —
188. f sin"zdz _ f > (2 ) (2 z)
cos*x -
sin"( = —

184, [— 2
sin™x cos™ %
— 1 1 m+4n—2 dz
n—1 sin™'z.cos" 'z n—1 sin™z. cos* 3z
1 1 m+4n—2 dz ]
m—1 sin™lz.cos" 'z m—1 sin™%z. cos"z
dx 1 cosz m—2 dx
185. | — =— .= n .
sin™z m—1 sin™'z m—1J sin™ iz
186. de 1  sinz  n—2 dz

cos*z n—1 cos* 'z mn—1J cos™ iz
lS?.ftana:dx:—logcosx.

188. ftan’xdx =tanz — 2.

n-1
189. f tan"a:dx—tan z_ f tan® 2z dz.

190. | ctnzdz =log sinz.
l9l.fctn’zdw =—ctnz —2.

n-1
lﬁs.fct.n“a:dz = — Et‘n_.lm— ctn™ -2z da.

n —

198. f seczdzr = log tan (;_' + g)

194.fsec’xdx = tanz.
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dz
cos*x

195. fsec"zdx =
196. f csczdz = log tan }z.

lﬂ?.fcsc’a:dx: —ctnz.

198.fcsc~xdx= da
sin"x

dz - —1 . gin ! b4 acosz
a+bcosz /gd_p? a+bcosz [

1 b+4acosx+ \/b’—-a’.sinz].

l”.

or log

V=& a+bcosz

dz

200'.fa+bcosa;-{-csina:

= -1 -sin"‘[ b’+c’+a(bcosa:+csinz)]

" ey Vb + & (a4 b cosz + ¢ sinz)
1

Vi re—a

[b’+c’+a(bcosa:+csin:c)+ m(bsinx—ccosz)'}
\/bT4—_c2(a+bcosa:+csina:) .

log

201.fxsin:vda:=sinx—a:cosx. -
202. fx’sinzdz= 2 8inz — (a® — 2) cosz.
203-fx"sina:dx= (82* — 6) sinz — (48 — 6 ) cosz.
204. fx"‘ sinzdx = — 2™ cosx + mfa:"‘“ cosxdz.
205. fa: cosxdx = cosx + x sinz.

206.J'a;’coszdx = 2z cosz + («* — 2) sina.

207.J‘a:" coszdr = (83— 6) cosx + (2* — 6 x) sinz.



TRANSCENDENTAL FUNCTIONS.

rx"cosxdx =z"sinz —m | 2™ 'sinzdz.

209, fsmx 1 . smm+ 1 COSZ .
—l ! m—1 ™!
210. cosxdx=_ 1  cosz__ 1 sinz
m—1 2! m—1J !
28 - < 2

211.f8'”dx= -2 e 4 2
z *=3.8 5.5 7.0 0.9

Ccos & z? at o8 v

. dz=1 A . S
212f r=lgr = it L a 6.6 8.8l

213-fsinmx sinngde = SR —n)z _ sin(m +n)z
2(m —n) 2(m + n)

4. _sin(m —n)z  sin(m+n)z,
21 fcosma:oosmvda: 2 (m—n) + 3(m + )

215, | sin'zdr =z sin 'z + V1 — 2.
216.fcos lgdz =z cos™z — V1 — o
217.ftan“a:da: =gtanlz— 1}‘10g 1+ 7).
218.fctn“':cdx =zctn 'z 4 $log (1 4 2°)-
219.fversin"a:dx = (z—1) versin-'z + V22 — 2
220.f(sin“a:)’dx =z (sin'z)?— 22+ 2V1 — &* sin12,
221.J .sin'zdr=}[(22°— 1) sin"'z + 2Vl =2 2'].
zrtlsinlz 1 ztldr

n+41 n41J (T4

1 -1 n+1
223, f 2" cos-lz dp = T CO8_'Z + 1 o Hdx
ntl et lJVT=g

"+1tan o 1 rHdx
224.fa:"tan"xd =2 -
:v n+41 n41J 1422

222, fw" sin laxdr =
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226.floga:da: =zlogz — 2.
(logz)* 01 ntl,
226.f - dz n+l(oga:)

227.fz1f;x=log.logx.

5. | Cogar =~ T (g

29, f = log x dz = 2+ [1;0:1 - (7%)—'}
280, f _f-

21, [ze=dz==(az—1).

2sz.fz"e"dx=“"’"—ﬂfx--'e"dx.

1 -
lz"‘ 1

234.fe"‘]ogzdx eﬁﬂ’ lf—d:v

233.

e* (a sinz — cosz)
a+1

286.fe" coszdz =& (acosz + sinz)_
a+1

235.J e*sinxdr =
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DEFINITE INTEGRAILS.

237.fﬂ’__2, i a>0; 0, it a=0; —%, it a<0.

a4 22
288, J; e lerdr = 1 l[logi]-_‘dx=l‘(n).
I'(n+1)=n-T(n). T(2)=T(1)=1.
T'(n+1)=mn!, if n is an integer r)=+vn

1 (] a1 2*'de _T(m)T(n)
2so.£w (1 —z)*'dr= f(1+:cy-+-_ oy

H
240. f sin*z dx =f cos*zdx
0 0
=185...(n—1) T, if n is an even integer.

2.46...(n) 2

24.6...(n—1)
=
1.3.5.7...n

1 CF)

y if n is an odd integer.

), for any value of =.
r(Z2+1
G*)
241.]?*“”_T‘L”=12', it m>0; 0,it m=0; —%, it m<o. v

242.fw=0, itm<—1orm>1;
P

"
m.f
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245. wqmzdx =T . e,

o 1420 2

246. fcosa:da: f sinzdz _

247. f ’_L
V1 —Ksin’z

[1 + (})’k’-}-(l 3>v+(‘ -8, 5>k‘+...], if <1

2.4.6
=K.

3
48-}; V1 —k%sin’z.dz

_f 11yt 1L3\IAY  71.8.5\1%8
_2[1 ) — (2 4) a (2.4'6) : ], if k< 1.
=E.

" 1 1

249, Lol 1 = —=TI(}).

(] ¢ 2aﬁ 2a £)

250.f°x~e wgp=L(nt+h) _n!
()

an+l au+l

251.f°x2~e-“’dx= 1.8.5... (2n — ])\F'
(] a

2 n+1 ar

L a? -2a
252.£ e adr= .e__2£r.

258.f e "cosm:cdz—a , if a>0.

mi

254.f e “*sinmxdz= ,m -, if a>0,
(] a* 4 m°

b2
- _ _n
257.f e~*#cosbrdr = 3%—“’
0

a
256. 'logz zd - %"

() l—a;
257, lﬁﬁdz——f’--
142 12



DEFINITE INTEGRALN.

2as.f les_dx____.

259, J; 1og(1+”> dz_ %’.
@z

260, Lk 2 .o
£ log(e’_l>dz 2

281.f :Il%‘_@—_-ﬁ.

f log smwda:_f log coszdo:——— - log 2.

264.f z.log sinzdz=— Elog2.
[
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AUXILIARY FORMULAS.

The following formulas are sometimes useful in the reduction
of integrals :

265. logu =Ilogcu 4 a constant.
268. log(— u)=1logu+ a constant.

—sin'v1 —u® 4 a constant.
287, sin~'u = { —4sin~! (2w —1) 4 a constant.

$8in"'2uv1 —%? 4 a constant.

- tan"l + a constant.
u

268, tan'u=
t:m"ll'!i + a constant.
—cu

269, log (z + yi)=4log (&* +¥°) = itan“i-

270. sin'u=-cos 'Vl —ul=tan ! ¥ = csc“l-
1 —u? %

271, coslu=sin"W1 —w¥= t.an“\ J l’—- 1 =sec™! 1
u u

272, tan 'z + tan 'y = tan-'(” + y).
1 ¥y

278, sin~'z +sin~'y=sin"!(z V1 — ¥ £ yV1 —2%).
274, cos~'zxcos'y=cos! (zy F V(1 —2*) (1 —¥%)).

. — ==

276. T = .
5 sin 2):

—xt

276, cOST = ej%.

277. sinzi=4i(e* — e *)={sinhax.
278, coszi=4% (e*+ e *) = coshz.

279. log,x=(2.3025851) log, .
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The Natural Logarithms of Numbers between 1.0 and 9.9.

H | !
N.:0|112‘3I4 5}6!7!8{9
- |
[ | '. i I | !
1. .0.000:0.0950.1820.262 | 0.336 | 0.405 | 0.470 | 0.531 ! 0.588 ! 0.642
2. 10.693 ‘ 0.74210.788 | 0.8330.875 0916 | 0.956 | 0.993 1 1.030 | 1.065
3. [ L0%9 1.131; 1.163 I 1.194 °1.224|1.253 11.281 | 1.308 | 1.335 [ 1.361
4. 1.386‘ 141111435 1 14501 14821 1,504 | 1.526 | 1,548 | 1569 | 1.589
5. |1.609 I 1.629 | 1.649 [1.66811.68611.705 | 1.723 | 1.7401 1.758 | 1.775
6. |1.79211.808 | 1.825|1.84111.85611.872(1.887|1.90211.917 | 1.932
7. 1191611960 | 1974 | 1.988 | 2.001 | 2.015 [ 2.028 | 2.041 | 2.054 | 2.067
8. 12.07912.092 I 2.104|2.116 1 2.128 | 2.140 | 2.152 | 2.163 | 2.175 | 2.186
9. | 2.19712.208 l 2.2192.230 | 2.241 | 2.251 | 2.262 | 2.272 | 2.282 l 2.293
1 i

The Natural Logarithms of Whole Numbers from 10 to 109.

2

9

COLRXTIRT O

-

oi1|23450718
— |

|
I
2.303 ' 2.398  2.485 | 2.565 2.639 [ 2.708 2.773 | 2.833  2.89%0 l2914
2996|3045 3.091 3135 :3.178 3.219|3.2583.296 3.3323.367
3401|3434, 3466 3497 3.52613.555 3.584!3.611]3.638 | 3.664
3689 [3.714 13.738 | 3.761 | 3.78+ | 3.807 | 3.829 | 3.850  3.871 | 3.892
3912(3.93213.951  3.970 | 3.989 | 4.007 4.ozs|4.0+3|4.oco[4.o7s
4094 4.111i4.1z7|4.1+3|+.159 4.1744.190 4.205 | 4.220 4234
4.218 4.26314.277|4.290'4.30+ 4.317 4.331|4.344‘4.3s7 4.369
4382 4.394 4.407|4.419'4.431|4.443 | 4.454 | 4466 ' 4.477 | 4.489
4.500 | 4.511|4.522 14.533 | 4.543  4.554 | .56+ 4.575 | 4.585 | 4.595

4.615 |4.625 4635 4644 | 4.654 | 4.663 4.673|4.682:4.691

4.605

The Values in Circular Measure of Angles which are given in
Degrees and Minutes.
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TABLES.

NATURAL TRIGONOMETRIC FUNCTIONS.

Angle. Sin. Csc. Tan. |, Ctn. See. ' Cos. !
0° 0.000 © 0.000 © 1.000  1.000 90°
1 0.017 | 57.30 0.017 |57.29 1.000 1.000 89
2 0.035 |28.65 0.035 |28.64 1.001 0.999 88
3 0.052 |19.11 0.052 |19.08 1.001 0.999 87
4 Il 0070 '14.34 0.070 114.30 1.002 0.998 86
b° | 0.087 |, 11.47 0.087 ;1143 1.004 0.996 85~
6 ! 0.105 | 9.567 0.105 9.514 1.006 0.995 84
7 0.122 8.206 0.123 8.144 1.008 0.993 83
8 10139 7.185 0.141 7.115 1.010 0.990 82
9 0.156 6.392 0.158 6.314 1.012 0.988 | 81
10° | 0.174 5.759 0.176 5.671 1.015 0983 | 80°
11 0.191 5.241 0.194 5.145 1.019 0.982 79
12 0.208  4.810 0.213 4.705 1.022 0.978 78
13 0.225 | 4445 0.231 4.331 1.026 0974 ! il
14 0.242 | 413+ | 0219 | 4.011 1.031 | 0970 1 76
16° | 0.259 3.860+ 0.268 3.732 1.035 0.966 | 76°
16 i 0.276 3.628 0.287 3.487 1.040 0.961 74
17 0.292 3.420 0.306 3.271 1.046 0.956 73
18 0.309 | 3.236 | 0.325 | 3.078 1.051 | 0951 72
19 1 0.326 3.072 0.344 2.904 1.058 0.946 71
20° 0.342 2924 0.36+ 2.747 1.064 0.940 70°
21 0.358 | 2.790 | 0.384¢ | 2.605 1.071 0934 69
22 0.375 2.669 0.40+ 2475 1.079 0.927 68
23 0.391 2.559 | 0424 | 2.356 1.086 | 0921 67
24 il 0407 2459 0.445 2.246 1.095 0914 66
252 0423 2.366 0.466 2.145 1.103 0.906 65°
26 il 0438 2.281 0.488 2.050 1.113 0.899 64
27 0454 2.203 | 0.5]0 1.963 1.122 0.891 63
28 | 0.469 2.130 ¢ 0.532 1.881 1.133 0.883 62
29 1 0485 2.063 | 0.554 1.80+ 1.143 0.875 61
30° 0.500 2.000 | 0.577 1.732 1.155 0.866 60°
31 0.515 1.942 0.601 1.664 1.167 0.857 59
32 || 0530 | 1857 | 0625 | 1600 | 1179 ' 0848 || 58
33 . 0.545 1.836 0.649 1.540 1.192 0.839 57
34 ' 0559 | 1.788 0.675 1.483 1.206 0.829 56
35° 0.574 | 1743 0.700 1.428 1.221 0.819 5b6°
36 I 0.588 I 1.701 0.727 1.376 1.236 0.809 54
37 0.602 1.662 - 0.754 1.327 1.252 0.799 53
38 i 0.616 1.624 0.781 1.280 1.269 0.788 52
39 0.629 1.589 | 0810 1.235 1.287 0.777 51
40° | 0.643 1.556 1 0.839 1.192 1.305 0.766 50°
41 0656 ! 1.52¢ ; 0869 ' 1.150 | 1.325 | 0.755 49
42 I 0.669 : 1.494 0900 | 1111 1.346 0.743 48
43 | 0682 | 1466 | 0933 1.072 1.367 | 0.731 47
44 1 0695 ' 1440 © 0966 | 1.036 | 1390 | 0719 46
4> | 0707 1413 1 1000 | 1000 | 1414 | 0707 | 48°
| I Cos. | Rec. I Ctn. ] Tan. I Cse. Sin. Angle.




TABLES.

3

Values of the Complete Elliptic Integrals, X and £, for Different
Values of the Modulus, k.

sin~1%k

‘ ‘
K | E ain“k‘ K

‘ 1.5708
1.5709
1.5713
1.5719
1.5727

‘ 1.5738
1.5711
1.5767
1.5785
1.5805
1.5828
1.585+
1.5882
1.5913

1 1.5708

1.5707
1.5703
. 1.5697
1.5689
| 1.5678
1.5665
1.5649
1.5632
1 1.5611
1.5589
1.5564
1.5537

30° 16858

31°
320
330

1.6941
1.7028
117119
1.7214
1.7312
1.7415

E

1.4675 ‘
1.4608
1.4539
1.4469
| 1.4397
| 1.4223

14248
| 14171 ‘

14092
14013

sinlk K | E

e
61°

[ 2.1565
1 2.1842
2.2132
2.2435
2.275¢
2.3088
23439
2.3809
2.4198 |
2.4610
| 2.5046 |
2.5507
‘ 2.5998
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TABLES.

The Common Logarithms of I'(n) for Values of n between 1 and 2.

z B < z B
s | 5 P e n | % s | 5 s | 5

2 £ g g g
101 (19975 || 1.21 |1.9617 || 141 [1.9478 || 1.61 [1.9517 | 1.81 |1.9704
1.02 (19951 1.22 19605 || 1.42 [1.9476| 1.62 19523 || 1.82 |1.9717
1.03 (19928 || 1.23 {19594 | 143 |1.9475| 1.63 |1.9529| 1.83 |1.9730
1.04 19905 || 1.24 [1.9583 || 1.44 |1.9473) 1.64 |1.9536| 1.84 |1.9743
105 [1.5883 || 1.25 (19573 || 1.45 [1.9473 || 1.65 |1.9543 | 1.85 {1.9757
1.06 [1.9862 || 1.26 |1.9564 || 1.46 |1.9472 | 1.66 |1.9550 | 1.86 {19771
107 (19841 || 1.27 |1.9554| 147 |1.9473|| 1.67 [1.9558| 1.87 |1.9786
1.08 19821 || 1.28 |19546 | 148 |1.9473| 1.68 |1.9566| 1.88 |1.9800
1.09 |1.9802 || 1.29 [1.9538 || 1.49 [1.9474 || 1.69 [1.9575 || 1.89 [1.9815
1.10 [1.9783 || 1.30 |1.9530 (| 1.50 |1.9475|| 1.70 |1.9584 | 1.90 {1.9831
111 |1.9765 || 1.31 [1.9523 || 1.51 [1.9477]| 1.71 {1.9593 || 191 [1.9846
112 {19748 || 1.32 [1.9516]| 1.52 [1.9479|| 1.72 [1.9603 || 1.92 |1.9862
113 [1.9731]| 1.33 [1.9510]] 1.53 [1.9482 (| 1.73 [1.9613 || 1.93 [1.9878
1.14 (19715 || 1.34 [1.9505 || 1.54 |1.9485 || 1.74 |1.9623| 1.94 |1.9895
115 |1.9699 || 1.35 [1.9500 (| 1.55 {1.9488 || 1.75 [1.9633|| 1.95 |1 9912
1.16 |1.9684 || 1.36 [1.9495 || 1.56 [1.9492|| 1.76 1.9644| 1.96 [1.9929
117 |1.9669 || 1.37 {19491 || 1.57 [1.9496|| 1.77 |1.9656| 1.97 [1.9946
118 (19655 !| 1.38 {19487 | 1.58 [1.9501 ] 1.78 [1.9667 | 1.98 |1.9964
119 [1.9642 || 1.39 [1.9483 || 1.59 [1.9506 || 1.79 |1.9679|| 1.99 |1.9982
1.20 {19629|| 1.40 [1.9481| 1.60 [1.9511 || 1.80 |1.9691| 2.00 l0.0000







To avoid fine, this book should be returned on
or before the date last stamped below

S0N-12-60—-98488




KA SCIILTICAL ~

SCIENCES 3

e

3 L10S 002 057 3

ERY
N
’
~

STANFORD UNIVERSITY LIBRAI
Stanford, California







